首页> 外文期刊>BMC Plant Biology >Genetic analysis of the barley variegation mutant, grandpa1.a
【24h】

Genetic analysis of the barley variegation mutant, grandpa1.a

机译:大麦杂色突变体的遗传分析,爷爷.A

获取原文
           

摘要

Providing the photosynthesis factory for plants, chloroplasts are critical for crop biomass and economic yield. However, chloroplast development is a complicated process, coordinated by the cross-communication between the nucleus and plastids, and the underlying biogenesis mechanism has not been fully revealed. Variegation mutants have provided ideal models to identify genes or factors involved in chloroplast development. Well-developed chloroplasts are present in the green tissue areas, while the white areas contain undifferentiated plastids that are deficient in chlorophyll. Unlike albino plants, variegation mutants survive to maturity and enable investigation into the signaling pathways underlying chloroplast biogenesis. The allelic variegated mutants in barley, grandpa 1 (gpa1), have long been identified but have not been genetically characterized. We characterized and genetically analyzed the grandpa1.a (gpa1.a) mutant. The chloroplast ultrastructure was evaluated using transmission electron microscopy (TEM), and it was confirmed that chloroplast biogenesis was disrupted in the white sections of gpa1.a. To determine the precise position of Gpa1, a high-resolution genetic map was constructed. Segregating individuals were genotyped with the barley 50?k iSelect SNP Array, and the linked SNPs were converted to PCR-based markers for genetic mapping. The Gpa1 gene was mapped to chromosome 2H within a gene cluster functionally related to photosynthesis or chloroplast differentiation. In the variegated gpa1.a mutant, we identified a large deletion in this gene cluster that eliminates a putative plastid terminal oxidase (PTOX). Here we characterized and genetically mapped the gpa1.a mutation causing a variegation phenotype in barley. The PTOX-encoding gene in the delimited region is a promising candidate for Gpa1. Therefore, the present study provides a foundation for the cloning of Gpa1, which will elevate our understanding of the molecular mechanisms underlying chloroplast biogenesis, particularly in monocot plants.
机译:为植物提供光合作用厂,叶绿体对于作物生物量和经济产量至关重要。然而,叶绿体的发育是一种复杂的过程,由核和塑性体之间的交叉通信协调,并且潜在的生物发生机理尚未完全揭示。杂色突变体提供了理想的模型,以鉴定叶绿体发育中涉及的基因或因素。在绿色组织区域中存在良好的叶绿体,而白色区域含有缺乏叶绿素的未分化塑性体。与白化植物不同,杂色突变体存活到成熟度,并能够调查叶绿体生物发生的信号传导途径。长期鉴定大麦,爷爷1(GPA1)中的等位基因杂色突变体,但尚未遗传表征。我们在特征和基因上分析了爷爷(GPA1.A)突变体。使用透射电子显微镜(TEM)评估叶绿体超微结构,并证实叶绿体生物发生在GPA1.a的白色截面中被破坏。为了确定GPA1的精确位置,构建了高分辨率遗传图谱。分离个体与薏米50?K Iselect SnP阵列进行基因分型,并且将连接的SNP转化为基于PCR的基于PCR的标记以进行遗传映射。将GPA1基因映射到与光合作用或叶绿体分化相关的基因簇中的染色体2h。在杂色的GPA1.a突变体中,我们鉴定了该基因簇中的大缺失,该基因簇中消除了推定的体液末端氧化酶(PTOX)。在这里,我们的特征和遗传地映射了GPA1.A突变,导致大麦中的杂色表型。分隔区中的PTOX编码基因是GPA1的有希望的候选者。因此,本研究为克隆GPA1提供了基础,这将提高我们对叶绿体生物发生的分子机制的理解,特别是在单子叶植物中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号