首页> 外文期刊>The Astrophysical journal >A Model for the Onset of Self-gravitation and Star Formation in Molecular Gas Governed by Galactic Forces. II. The Bottleneck to Collapse Set by Cloud–Environment Decoupling
【24h】

A Model for the Onset of Self-gravitation and Star Formation in Molecular Gas Governed by Galactic Forces. II. The Bottleneck to Collapse Set by Cloud–Environment Decoupling

机译:半乳液势力治理的分子气体自我引主和星形成的模型。 II。 通过云环境解耦倒塌的瓶颈

获取原文
           

摘要

In Meidt et al., we showed that gas kinematics on the scale of individual molecular clouds are not entirely dominated by self-gravity but also track a component that originates with orbital motion in the potential of the host galaxy. This agrees with observed cloud line widths, which show systematic variations from virial motions with environment, pointing at the influence of the galaxy potential. In this paper, we hypothesize that these motions act to slow down the collapse of gas and so help regulate star formation. Extending the results of Meidt et al., we derive a dynamical collapse timescale that approaches the free-fall time only once the gas has fully decoupled from the galactic potential. Using this timescale, we make predictions for how the fraction of free-falling, strongly self-gravitating gas varies throughout the disks of star-forming galaxies. We also use this collapse timescale to predict variations in the molecular gas star formation efficiency, which is lowered from a maximum, feedback-regulated level in the presence of strong coupling to the galactic potential. Our model implies that gas can only decouple from the galaxy to collapse and efficiently form stars deep within clouds. We show that this naturally explains the observed drop in star formation rate per unit gas mass in the Milky Way's Central Molecular Zone and other galaxy centers. The model for a galactic bottleneck to star formation also agrees well with resolved observations of dense gas and star formation in galaxy disks and the properties of local clouds.
机译:在Meidt等人,我们展示了在单个分子云的等级上的气体运动学不完全由自重占主导地位,而且还追踪源于主体星系的潜力的轨道运动的组件。这与观察到的云线宽度同意,其显示出与环境中的病毒动作的系统变化,指向星系潜力的影响。在本文中,我们假设这些动作是为了减缓天然气的崩溃,因此有助于调节星形成。延长Meidt等人的结果,我们推出了一种动态折叠时间尺度,只有一旦气体完全与银河系潜力分离出来的自由落体时间就会接近自由落体时间。使用这种时间尺度,我们做出了对无坠落的一部分,强烈的自我引物气体的分数在整个星形星系的整个圆盘上变化的预测。我们还使用这种折叠时间形象来预测分子气体星形形成效率的变化,这在存在与银河系潜力的强烈耦合时,从最大反馈调节水平降低。我们的模型意味着天然气只能从星系中脱钩以崩溃和有效地形成云层内的星星。我们表明,这自然地解释了银河系中央分子区和其他星系中心的每单位气体质量的明星形成率下降。恒星形成的银河瓶颈模型也很好地同意了在星系盘中的致密气体和星形形成的分辨观察以及当地云的性质。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号