首页> 外文期刊>Applied Microbiology >A New Approach for Evaluating Electron Transfer Dynamics by Using In Situ Resonance Raman Microscopy and Chronoamperometry in Conjunction with a Dynamic Model
【24h】

A New Approach for Evaluating Electron Transfer Dynamics by Using In Situ Resonance Raman Microscopy and Chronoamperometry in Conjunction with a Dynamic Model

机译:一种新方法,用于使用原位共振拉曼显微镜和计时器与动态模型一起使用转移动力学

获取原文
       

摘要

Geobacter sulfurreducens is a good candidate as a chassis organism due to its ability to form thick, conductive biofilms, enabling long-distance extracellular electron transfer (EET). Due to the complexity of EET pathways in G. sulfurreducens , a dynamic approach is required to study genetically modified EET rates in the biofilm. By coupling online resonance Raman microscopy with chronoamperometry, we were able to observe the dynamic discharge response in the biofilm’s cytochromes to an increase in anode voltage. Measuring the heme redox state alongside the current allows for the fitting of a dynamic model using the current response and a subsequent validation of the model via the value of a reduced cytochrome c Raman peak. The modeled reduced cytochromes closely fitted the Raman response data from the G. sulfurreducens wild-type strain, showing the oxidation of heme groups in cytochromes until a new steady state was achieved. Furthermore, the use of a dynamic model also allows for the calculation of internal rates, such as acetate and NADH consumption rates. The Raman response of a mutant lacking OmcS showed a higher initial oxidation rate than predicted, followed by an almost linear decrease of the reduced mediators. The increased initial rate could be attributed to an increase in biofilm conductivity, previously observed in biofilms lacking OmcS. One explanation for this is that OmcS acts as a conduit between cytochromes; therefore, deleting the gene restricts the rate of electron transfer to the extracellular matrix. This could, however, be modeled assuming a linear oxidation rate of intercellular mediators.IMPORTANCE Bioelectrochemical systems can fill a vast array of application niches, due to the control of redox reactions that it offers. Although native microorganisms are preferred for applications such as bioremediation, more control is required for applications such as biosensors or biocomputing. The development of a chassis organism, in which the EET is well defined and readily controllable, is therefore essential. The combined approach in this work offers a unique way of monitoring and describing the reaction kinetics of a G. sulfurreducens biofilm, as well as offering a dynamic model that can be used in conjunction with applications such as biosensors.
机译:由于其形成厚,导电性生物膜,使能长距离细胞外电子转移(EET)能够,Geobacter Sulfurredenens是一种良好的候选者作为底盘生物体。由于EET途径在G.硫化琥珀酰核的复杂性,需要动态方法来研究生物膜中的转基因EET速率。通过将在线共振拉曼显微镜用ChronoAmperomic结合,我们能够观察生物膜细胞变色中的动态放电响应,以增加阳极电压的增加。测量电流旁边的血红音氧化还原状态允许使用电流响应的动态模型和通过减少细胞色素C拉曼峰值的值进行模型的随后验证。模型的降低的细胞变色细胞变性密切关注来自G.硫化酸野生型菌株的拉曼响应数据,显示血红素群中的血红素瘤氧化,直至实现了新的稳态。此外,使用动态模型还允许计算内部速率,例如醋酸盐和NADH消费率。缺乏OMC的突变体的拉曼响应显示出比预测的初始氧化率更高,然后几乎线性降低降低的介质。初始速率增加可能归因于生物膜导电性的增加,之前在缺乏OMC的生物膜中观察到。这样做的一个解释是,OMCs在细胞变色之间作用为导管;因此,删除基因将电子转移速率限制为细胞外基质。然而,这可能是假设细胞间介质的线性氧化速率的建模。通过对它提供的氧化还原反应的控制,分析生物电化学系统可以填充大量应用效力。尽管本机微生物是生物化修复的应用,但诸如生物传感器或生物机等应用需要更多的控制。因此,开发底盘生物,其中EET定义很好,易于控制,因此是必不可少的。该工作中的组合方法提供了一种独特的监测方法,并描述了G.硫化琥珀炔烃的反应动力学,以及提供可与生物传感器等应用一起使用的动态模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号