首页> 外文期刊>Hydrology and Earth System Sciences >Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37?years
【24h】

Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37?years

机译:Lake Thermal结构在37岁以上的Eutrophic Lake中推动夏季缺氧动态的续变性

获取原文
           

摘要

The concentration of oxygen is fundamental to lake water quality and ecosystem functioning through its control over habitat availability for organisms, redox reactions, and recycling of organic material. In many eutrophic lakes, oxygen depletion in the bottom layer (hypolimnion) occurs annually during summer stratification. The temporal and spatial extent of summer hypolimnetic anoxia is determined by interactions between the lake and its external drivers (e.g., catchment characteristics, nutrient loads, meteorology) as well as internal feedback mechanisms (e.g., organic matter recycling, phytoplankton blooms). How these drivers interact to control the evolution of lake anoxia over decadal timescales will determine, in part, the future lake water quality. In this study, we used a vertical one-dimensional hydrodynamic–ecological model?(GLM-AED2) coupled with a calibrated hydrological catchment model?(PIHM-Lake) to simulate the thermal and water quality dynamics of the eutrophic Lake Mendota?(USA) over a 37 year period. The calibration and validation of the lake model consisted of a global sensitivity evaluation as well as the application of an optimization algorithm to improve the fit between observed and simulated data. We calculated stability indices (Schmidt stability, Birgean work, stored internal heat), identified spring mixing and summer stratification periods, and quantified the energy required for stratification and mixing. To qualify which external and internal factors were most important in driving the interannual variation in summer anoxia, we applied a random-forest classifier and multiple linear regressions to modeled ecosystem variables (e.g., stratification onset and offset, ice duration, gross primary production). Lake Mendota exhibited prolonged hypolimnetic anoxia each summer, lasting between 50–60?d. The summer heat budget, the timing of thermal stratification, and the gross primary production in the epilimnion prior to summer stratification were the most important predictors of the spatial and temporal extent of summer anoxia periods in Lake Mendota. Interannual variability in anoxia was largely driven by physical factors: earlier onset of thermal stratification in combination with a higher vertical stability strongly affected the duration and spatial extent of summer anoxia. A measured step change upward in summer anoxia in?2010 was unexplained by the GLM-AED2 model. Although the cause remains unknown, possible factors include invasion by the predacious zooplankton Bythotrephes longimanus . As the heat budget depended primarily on external meteorological conditions, the spatial and temporal extent of summer anoxia in Lake Mendota is likely to increase in the near future as a result of projected climate change in the region.
机译:氧气的浓度是湖泊水质和生态系统的基础,通过控制生物,氧化还原反应和有机材料的再循环的栖息地可用性。在许多富营养的湖泊中,在夏季分层期间每年发生底层(低旋转)中的氧耗尽。夏季低估缺氧的时间和空间程度是通过湖泊及其外部驾驶员(例如,集水区,营养负荷,气象,气象学)以及内部反馈机制(例如,有机物质再循环,浮游植物盛开)来确定。这些司机如何互动,以控制亚溪湖的演变,在Decadal Timescalles将部分地确定未来的湖泊水质。在这项研究中,我们使用了垂直一维流体动力学 - 生态模型?(GLM-AED2)与校准的水文集水区模型(Pihm-Lake)耦合,模拟Eutrophic Lake Mendota的热水和水质动态?(美国)超过37年。湖模型的校准和验证包括全局敏感性评估,以及应用优化算法,以改善观察和模拟数据之间的拟合。我们计算了稳定性指数(施密特稳定性,Birgean工作,储存的内部热量),确定了弹簧混合和夏季分层期,并量化了分层和混合所需的能量。为了有资格在驾驶夏季缺氧的年间变异方面最重要的是,我们应用了随机林分类器和多元线性回归,以建模的生态系统变量(例如,分层发作和偏移,冰持续时间,总主要生产)。 Mendota Lake Mendota每年夏天展现长时间的低估缺氧,持续在50-60?D之间。夏季热预算,热分层的时序,夏季分层前的癫痫型初级生产是夏季缺氧期间夏季缺氧期的空间和时间范围最重要的预测因子。缺氧中的续变性很大程度上是由物理因素驱动的:早期的热分层发作与更高的垂直稳定性相结合强烈影响夏季缺氧的持续时间和空间程度。在夏季缺氧中的测量步骤向上变化了,GLM-AED2模型无法解释。虽然原因仍然是未知的,但可能的因素包括兽人浮游动物的入侵,兽性浮游生物龙眼诺曼努斯。随着热预算主要取决于外部气象条件,由于该地区的强劲气候变化,湖门亚溪湖夏季缺氧的空间和时间范围可能会在不久的将来增加。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号