首页> 外文期刊>Wind Energy Science >A simplified model for transition prediction applicable to wind-turbine rotors
【24h】

A simplified model for transition prediction applicable to wind-turbine rotors

机译:一种用于风力涡轮机转子的过渡预测的简化模型

获取原文
           

摘要

This work aims to develop a simple framework for transition prediction over wind-turbine blades, including effects of the blade rotation and spanwise velocity without requiring fully three-dimensional simulations. The framework is based on a set of boundary-layer equations?(BLEs) and parabolized stability equations?(PSEs), including rotation effects. An important element of the developed BL?method is the modeling of the spanwise velocity at the boundary-layer edge. The two analyzed wind-turbine geometries correspond to a constant airfoil and the DTU 10-MW Reference Wind Turbine blades. The BL?model allows an accurate prediction of the chordwise velocity profiles. Further, for regions not too close to the stagnation point and root of the blade, profiles of the spanwise velocity agree with those from Reynolds-averaged Navier–Stokes?(RANS) simulations. The model also allows predicting inflectional velocity profiles for lower radial positions, which may allow crossflow transition. Transition prediction is performed at several radial positions through an “envelope-of-envelopes” methodology. The results are compared with the e N ?method of Drela and Giles, implemented in the EllipSys3D RANS code. The RANS transition locations closely agree with those from the PSE analysis of a 2D?mean flow without rotation. These results also agree with those from the developed model for cases with low?3D and rotation effects, such as at higher radial positions and geometries with strong adverse pressure gradients where 2D Tollmien–Schlichting (TS) waves are dominant. However, the RANS and PSE 2D?models predict a later transition in the regions where 3D?and rotation effects are non-negligible. The developed method, which accounts for these effects, predicted earlier transition onsets in this region (e.g., 19?% earlier than RANS at 26?% of the radius for the constant-airfoil geometry) and shows that transition may occur via highly oblique modes. These modes differ from 2D?TS?waves and appear in locations with inflectional spanwise velocity. However, except close to the root of the blade, crossflow transition is unlikely since the crossflow velocity is too low. At higher radial positions, where 3D?and rotation effects are weaker and the adverse pressure gradient is more significant, modes with small wave angles (close to?2D) are found to be dominant. Finally, it is observed that an increase in the rotation speed modifies the spanwise velocity and increases the Coriolis and centrifugal forces, shifting the transition location closer to the leading edge. This work highlights the importance of considering the blade rotation and the three-dimensional flow generated by that in transition prediction, especially in the inner part of the blade.
机译:该工作旨在开发一种用于过渡预测的简单框架,用于对风力涡轮叶片的转换预测,包括叶片旋转和翼展速度的效果而不需要完全三维模拟。该框架基于一组边界层方程?(BLES)和抛物稳定方程式?(pses),包括旋转效果。发达的BL的一个重要元素?方法是边界层边缘处的翼展速度的建模。两个分析的挡风涡轮机几何形状对应于恒定的翼型和DTU 10-MW参考风力涡轮机叶片。 BL?模型允许准确地预测曲线速度谱。此外,对于不太靠近刀片的停滞点和根的区域,翼展速度的轮廓与来自雷诺平均的Navier-Stokes的曲线同意?(RANS)模拟。该模型还允许预测用于较低径向位置的折射速度分布,其可以允许跨流过渡。通过“信封包络”方法在几个径向位置执行过渡预测。将结果与E n?德利拉和Giles的方法进行比较,在省略号中实现。 RAN过渡位置与来自2D的PSE分析的人非常同意,而没有旋转的平均流量。这些结果还与来自发达模型的案例与低何种速度和旋转效果的案例相同,例如在较高的径向位置和几何形状,具有强不利的压力梯度,其中2D Tollmien-Schlichting(TS)波是显性的。然而,Rans和PSE 2D?模型预测3D的区域稍后过渡,其中3D?旋转效应是不可忽略的。占这些效果的开发方法,预测了该区域的早期过渡垂直(例如,比恒定翼型几何形状的半径的26Ω%)预测到该区域的早期过渡垂直(例如,比rans的rans),并显示通过高度倾斜模式发生转换。这些模式不同于2D?TS?波浪,并出现在具有折射枝条速度的位置。然而,除了靠近刀片的根,由于横流速度太低,因此不太可能不太可能。在较高的径向位置,其中3D?和旋转效果较弱并且不利的压力梯度更大,发现具有小波形的模式(接近Δ2d)是显性的。最后,观察到旋转速度的增加改变了翼展速度并增加了科里奥利和离心力,使过渡位置更靠近前缘。这项工作突出了考虑叶片旋转的重要性和在过渡预测中产生的三维流动,尤其是在叶片的内部。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号