...
首页> 外文期刊>Nano-Micro Letters >Ultrasonic Plasma Engineering Toward Facile Synthesis of Single-Atom M-N4/N-Doped Carbon (M?=?Fe, Co) as Superior Oxygen Electrocatalyst in Rechargeable Zinc–Air Batteries
【24h】

Ultrasonic Plasma Engineering Toward Facile Synthesis of Single-Atom M-N4/N-Doped Carbon (M?=?Fe, Co) as Superior Oxygen Electrocatalyst in Rechargeable Zinc–Air Batteries

机译:超声等离子体工程在可充电锌 - 空气电池中的高氧电池作为优质氧电催化剂

获取原文
   

获取外文期刊封面封底 >>

       

摘要

As bifunctional oxygen evolution/reduction electrocatalysts, transition-metal-based single-atom-doped nitrogen–carbon (NC) matrices are promising successors of the corresponding noble-metal-based catalysts, offering the advantages of ultrahigh atom utilization efficiency and surface active energy. However, the fabrication of such matrices (e.g., well-dispersed single-atom-doped M-N4/NCs) often requires numerous steps and tedious processes. Herein, ultrasonic plasma engineering allows direct carbonization in a precursor solution containing metal phthalocyanine and aniline. When combining with the dispersion effect of ultrasonic waves, we successfully fabricated uniform single-atom M-N4 (M?=?Fe, Co) carbon catalysts with a production rate as high as 10 mg min?1. The Co-N4/NC presented a bifunctional potential drop of ΔE?=?0.79 V, outperforming the benchmark Pt/C-Ru/C catalyst (ΔE?=?0.88 V) at the same catalyst loading. Theoretical calculations revealed that Co-N4 was the major active site with superior O2 adsorption–desorption mechanisms. In a practical Zn–air battery test, the air electrode coated with Co-N4/NC exhibited a specific capacity (762.8 mAh g?1) and power density (101.62 mW cm?2), exceeding those of Pt/C-Ru/C (700.8 mAh g?1 and 89.16 mW cm?2, respectively) at the same catalyst loading. Moreover, for Co-N4/NC, the potential difference increased from 1.16 to 1.47 V after 100 charge–discharge cycles. The proposed innovative and scalable strategy was concluded to be well suited for the fabrication of single-atom-doped carbons as promising bifunctional oxygen evolution/reduction electrocatalysts for metal–air batteries.
机译:作为双官能氧气进化/还原电催化剂,过渡金属的单原子掺杂氮 - 碳(NC)基质是相应贵金属基催化剂的承诺接替,提供超高原子利用效率和表面活性的优点。然而,这种矩阵的制造(例如,分散的单原子掺杂M-N4 / NCs)通常需要许多步骤和繁琐的过程。这里,超声等离子体工程允许在含金属酞菁和苯胺的前体溶液中直接碳化。当与超声波的色散效果相结合时,我们成功地制造了均匀的单射脉M-N4(M?= Fe,Co)碳催化剂,其生产率高达10mg min = 1。 CO-N4 / NC呈现了ΔE≤eα=Δ=Δ= 0.79V的双功能势下降,在相同的催化剂负载下优于基准Pt / C-Ru / C催化剂(ΔE≤X≤0.88V)。理论计算显示,CO-N4是具有优异O2吸附 - 解吸机制的主要活性位点。在实际的Zn-Abile电池测试中,涂有CO-N4 / NC的空气电极表现出特定容量(762.8mAhg'1)和功率密度(101.62mm = 2),超过Pt / C-ru / C(分别为700.8mah g?1和89.16mmβ2,分别)在相同的催化剂负载下。此外,对于CO-N4 / NC,在100次充电 - 放电循环之后,电位差从1.16到1.47V增加。拟议的创新和可扩展的策略得出得出适合于制造单原子掺杂的碳作为有前途的双官能氧气进化/降低金属电池的电催化剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号