...
首页> 外文期刊>Nano-Micro Letters >Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting Sodium/Potassium Ions Storage
【24h】

Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting Sodium/Potassium Ions Storage

机译:强耦合的2D过渡金属硫属化物 - 乳腺甲醛含有超空性结构,具有超速离子传输,用于升压钠/钾离子储存

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Combining with the advantages of two-dimensional (2D) nanomaterials, MXenes have shown great potential in next generation rechargeable batteries. Similar with other 2D materials, MXenes generally suffer severe self-agglomeration, low capacity, and unsatisfied durability, particularly for larger sodium/potassium ions, compromising their practical values. In this work, a novel ternary heterostructure self-assembled from transition metal selenides (MSe, M?=?Cu, Ni, and Co), MXene nanosheets and N-rich carbonaceous nanoribbons (CNRibs) with ultrafast ion transport properties is designed for sluggish sodium-ion (SIB) and potassium-ion (PIB) batteries. Benefiting from the diverse chemical characteristics, the positively charged MSe anchored onto the electronegative hydroxy (–OH) functionalized MXene surfaces through electrostatic adsorption, while the fungal-derived CNRibs bonded with the other side of MXene through amino bridging and hydrogen bonds. This unique MXene-based heterostructure prevents the restacking of 2D materials, increases the intrinsic conductivity, and most importantly, provides ultrafast interfacial ion transport pathways and extra surficial and interfacial storage sites, and thus, boosts the high-rate storage performances in SIB and PIB applications. Both the quantitatively kinetic analysis and the density functional theory (DFT) calculations revealed that the interfacial ion transport is several orders higher than that of the pristine MXenes, which delivered much enhanced Na+ (536.3 mAh g?1@ 0.1 A g?1) and K+ (305.6 mAh g?1@ 1.0 A g?1 ) storage capabilities and excellent long-term cycling stability. Therefore, this work provides new insights into 2D materials engineering and low-cost, but kinetically sluggish post-Li batteries.
机译:与二维(2D)纳米材料的优点相结合,MxENES在下一代可充电电池中显示出很大的潜力。与其他2D材料类似,MXENE通常遭受严重的自聚集,低容量和不满足的耐久性,特别是对于较大的钠/钾离子,损害其实际值。在这项工作中,由过渡金属硒化酯(MSE,M-=ΔU,Ni和Co),MxEne纳米蛋白酶和富含镍氢碳质纳米纤维(CNRIBS)自组装的新型三元异性结构用于超额外的离子传输性能,用于缓慢钠离子(SIB)和钾离子(PIB)电池。受益于多种化学特性,通过静电吸附锚定到电酮羟基(-OH)官能化M×表面上的带正电荷的MSE,而真菌衍生的CNRIBS通过氨基桥接和氢键与MXENE的另一侧粘合。这种独特的蒙片的异质结构可防止2D材料的重新包装,增加内在电导率,最重要的是,提供超快界面离子输送途径和额外的曲线和界面储存部位,从而提高SIB和PIB中的高速存储性能应用程序。定量动力学分析和密度泛函理论(DFT)计算透露,界面离子转运是高于原始MxEN的几个订单,其递送了大量增强的Na +(536.3mah g'10.1 ag≤1)和K +(305.6 mah g?1 @ 1.0 a g?1)存储能力和优异的长期循环稳定性。因此,这项工作为2D材料的工程和低成本提供了新的见解,但动力学迟缓的电池。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号