...
首页> 外文期刊>Frontiers in Medicine >Theranostic Terbium Radioisotopes: Challenges in Production for Clinical Application
【24h】

Theranostic Terbium Radioisotopes: Challenges in Production for Clinical Application

机译:Theranostic Terbium放射性同位素:临床应用的生产挑战

获取原文
           

摘要

Currently, research on terbium has gained a momentum owing to its four short-lived radioisotopes, 149 Tb, 152 Tb, 155 Tb, and 161 Tb, all of which can be considered in one or another field of nuclear medicine. The members of this emerging quadruplet family have appealing nuclear characteristics and have the potential to do justice to the proposed theory of theranostics nuclear medicine, which amalgamates therapeutic and diagnostic radioisotopes together. The main challenge for in vivo use of these radioisotopes is to produce them in sufficient quantity. This review discusses that, at present, neither light charged particle nor the heavy ion (HI) activation are suitable for large-scale production of neutron deficient terbium nuclides. Three technological factors like (i) enrichment of stable isotopes to a considerable level, (ii) non-availability of higher energies in commercial cyclotrons, and (iii) non-availability of the isotope separation technique coupled with commercial accelerators limit the large scale production of terbium radionuclides by light charged particle activation. If in future, the technology can overcome these hurdles, then the light charged particle activation of enriched targets would produce a high amount of useful terbium radionuclides. On the other hand, to date, the spallation reaction coupled with an online isotope separator has been found suitable for such a requirement, which has been adopted by the CERN MEDICIS programme. The therapeutic 161 Tb radionuclide can be produced in a reactor by neutron bombardment on enriched 160 Gd target to produce 161 Gd which subsequently decays to 161 Tb. The radiochemical separation is mandatory even if the ISOL technique is used to obtain high radioisotopic purity of the desired radioisotope.
机译:目前,由于其四种短寿命的放射性同位素,149吨,152吨,155吨,161吨,所有这些都可以在一个或另一个核医学领域考虑,铽的研究势头。这个新兴四点家庭的成员吸引了核特征,并有可能对拟议的治疗核医学理论进行司法,其合并治疗和诊断放射性同位素。体内使用这些放射性同位素的主要挑战是生产足够的数量。本综述讨论了,目前既不是光电粒子也不是重离子(HI)活化,适用于大规模生产中子缺乏铽核素。 (i)富含稳定同位素的三种技术因素,(ii)商业快乐中的稳定同位素,(ii)在商业快乐中的较高能量,(iii)与商业加速器相连的同位素分离技术的非可用性限制了大规模生产用光电颗粒活化的铽放射性核素。如果在将来,该技术可以克服这些障碍,然后富集靶的光电颗粒活化会产生大量有用的铽放射核素。另一方面,迄今为止,已经发现与在线同位素分离器偶联的椎间素反应适用于这些要求,该要求已被Cern Medics计划采用。通过中子轰击,可以在富集的160gd靶标中在反应器中制备治疗性161 TB放射性核素,以产生161个GD,其随后腐蚀至161吨。即使分离技术用于获得所需放射性同位素的高放射性同位素纯度,也是强制性的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号