首页> 外文期刊>Geoscientific Model Development Discussions >Development of a large-eddy simulation subgrid model based on artificial neural networks: a case study of turbulent channel flow
【24h】

Development of a large-eddy simulation subgrid model based on artificial neural networks: a case study of turbulent channel flow

机译:基于人工神经网络的大涡模拟模型的开发 - 一种湍流通道流动的案例研究

获取原文
           

摘要

Atmospheric boundary layers and other wall-bounded flows are often simulated with the large-eddy simulation (LES) technique, which relies on subgrid-scale (SGS) models to parameterize the smallest scales. These SGS models often make strong simplifying assumptions. Also, they tend to interact with the discretization errors introduced by the popular LES approach where a staggered finite-volume grid acts as an implicit filter. We therefore developed an alternative LES SGS model based on artificial neural networks (ANNs) for the computational fluid dynamics MicroHH code (v2.0). We used a turbulent channel flow (with friction Reynolds number Re τ =590 ) as a test case. The developed SGS model has been designed to compensate for both the unresolved physics and instantaneous spatial discretization errors introduced by the staggered finite-volume grid. We trained the ANNs based on instantaneous flow fields from a direct numerical simulation (DNS) of the selected channel flow. In general, we found excellent agreement between the ANN-predicted SGS fluxes and the SGS fluxes derived from DNS for flow fields not used during training. In addition, we demonstrate that our ANN SGS model generalizes well towards other coarse horizontal resolutions, especially when these resolutions are located within the range of the training data. This shows that ANNs have potential to construct highly accurate SGS models that compensate for spatial discretization errors. We do highlight and discuss one important challenge still remaining before this potential can be successfully leveraged in actual LES simulations: we observed an artificial buildup of turbulence kinetic energy when we directly incorporated our ANN SGS model into a LES simulation of the selected channel flow, eventually resulting in numeric instability. We hypothesize that error accumulation and aliasing errors are both important contributors to the observed instability. We finally make several suggestions for future research that may alleviate the observed instability.
机译:通常用大涡模拟(LES)技术模拟大气边界层和其他壁边流量,该技术依赖于子地图(SGS)模型来参数化最小的尺度。这些SGS模型通常会强烈简化假设。此外,它们倾向于与流行的LES方法引入的离散化误差,其中交错的有限卷网发用作隐式滤波器。因此,我们开发了一种基于人工神经网络(ANNS)的替代LES SGS模型,用于计算流体动力学MICROH码(V2.0)。我们使用湍流通道流(用摩擦雷诺数Reτ= 590)作为测试用例。开发的SGS模型旨在补偿由交错的有限卷网引入的未解决的物理和瞬时空间离散化误差。我们根据所选通道流程的直接数值模拟(DNS),基于瞬时流场培训了ANN。通常,我们在Ann-Prediced的SGS助熔剂和来自DNS的SGS通量之间发现了良好的一致性,用于在训练期间未使用的流场的DNS。此外,我们证明我们的ANN SGS模型呈良好地展示了其他粗略分辨率,特别是当这些分辨率位于培训数据的范围内时。这表明ANNS具有构造高度精确的SGS模型,可补偿空间离散化误差。我们突出显示并讨论在实际LES模拟中可以成功利用此潜力之前仍然存在的一个重要挑战:当我们直接将我们的ANN SGS模型直接纳入所选通道流的LES模拟时,我们观察到湍流动能的人工积累导致数字不稳定。我们假设错误累积和锯齿误差是观察到的不稳定的重要贡献者。我们终于对未来的研究进行了几个建议,可能会缓解观察到的不稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号