首页> 外文期刊>Earth System Science Data >Year-long, broad-band, microwave backscatter observations of an alpine meadow over the Tibetan Plateau with a ground-based scatterometer
【24h】

Year-long, broad-band, microwave backscatter observations of an alpine meadow over the Tibetan Plateau with a ground-based scatterometer

机译:年长,广泛的宽带,微波反向散射观察藏高原的高山草甸,具有地面散射仪

获取原文
           

摘要

A ground-based scatterometer was installed on an alpine meadow over the Tibetan Plateau to study the soil moisture and temperature dynamics of the top soil layer and air–soil interface during the period August 2017–August 2018. The deployed system measured the amplitude and phase of the ground surface radar return at hourly and half-hourly intervals over 1–10? GHz in the four linear polarization combinations (vv, hh, hv, vh). In this paper we describe the developed scatterometer system, gathered datasets, retrieval method for the backscattering coefficient ( σ 0 ), and results of σ 0 . The system was installed on a 5? m high tower and designed using only commercially available components: a vector network analyser (VNA), four coaxial cables, and two dual-polarization broad-band gain horn antennas at a fixed position and orientation. We provide a detailed description on how to retrieve the backscattering coefficients for all four linear polarization combinations σ p q 0 , where p is the received and q the transmitted polarization (v or h), for this specific scatterometer design. To account for the particular effects caused by wide antenna radiation patterns ( G ) at lower frequencies, σ 0 was calculated using the narrow-beam approximation combined with a mapping of the function G 2 / R 4 over the ground surface. ( R is the distance between antennas and the infinitesimal patches of ground surface.) This approach allowed for a proper derivation of footprint positions and areas, as well as incidence angle ranges. The frequency averaging technique was used to reduce the effects of fading on the σ p q 0 uncertainty. Absolute calibration of the scatterometer was achieved with measurements of a rectangular metal plate and rotated dihedral metal reflectors as reference targets. In the retrieved time series of σ p q 0 for L-band (1.5–1.75? GHz ), S-band (2.5–3.0? GHz ), C-band (4.5–5.0? GHz ), and X-band (9.0–10.0? GHz ), we observed characteristic changes or features that can be attributed to seasonal or diurnal changes in the soil: for example a fully frozen top soil, diurnal freeze–thaw changes in the top soil, emerging vegetation in spring, and drying of soil. Our preliminary analysis of the collected σ p q 0 time-series dataset demonstrates that it contains valuable information on water and energy exchange directly below the air–soil interface – information which is difficult to quantify, at that particular position, with in situ measurement techniques alone. Availability of backscattering data for multiple frequency bands (raw radar return and retrieved σ p q 0 ) allows for studying scattering effects at different depths within the soil and vegetation canopy during the spring and summer periods. Hence further investigation of this scatterometer dataset provides an opportunity to gain new insights in hydrometeorological processes, such as freezing and thawing, and how these can be monitored with multi-frequency scatterometer observations. The dataset is available via https://doi.org/10.17026/dans-zfb-qegy ( Hofste et?al. ,? 2021 ) . Software code for processing the data and retrieving σ p q 0 via the method presented in this paper can be found under https://doi.org/10.17026/dans-xyf-fmkk ( Hofste ,? 2021 ) .
机译:在藏高原上安装了基于地面散射仪,以研究2017年8月期间土壤层和空土界面的土壤水分和温度动态。部署系统测量了幅度和阶段在1-10上以每小时和半小时的间隔返回地面雷达? GHz在四个线性偏振组合(VV,HH,HV,VH)中。在本文中,我们描述了开发的散射仪系统,聚集的数据集,反向散射系数(σ0)的检索方法,以及σ0的结果。系统安装在5? M高塔和仅使用市售的组件设计:矢量网络分析仪(VNA),四个同轴电缆和两个双极化宽带增益喇叭天线,处于固定位置和方向。我们提供了关于如何检索所有四个线性偏振组合ΣPQ 0的反向散射系数的详细描述,其中P是接收的,并且对于该特定散射计设计,P是接收的和Q透射极化(V或H)。为了考虑由较低频率的宽天线辐射图案(g)引起的特定效果,使用窄光束近似来计算σ0,与地面上的函数G 2 / R 4的映射组合。 (R是天线之间的距离和地面的无限斑块。)这种方法允许占地面积和区域的适当推导,以及入射角范围。频率平均技术用于降低衰落对ΣPQ 0不确定性的影响。通过测量矩形金属板和旋转的Dihedral金属反射器作为参考目标来实现散射仪的绝对校准。在L频段的检索时间序列(1.5-1.75≤GHz),S波段(2.5-3.0≤GHz),C波段(4.5-5.0?GHz)和X波段(9.0- 10.0?GHz),观察到可归因于土壤的季节性或昼夜变化的特征变化或特征:例如,春季土壤中昼夜冻融的昼夜冻融变化,春季新兴植被和干燥土壤。我们对收集的ΣPQ0时序数据集的初步分析表明,它包含关于水和能量交换的有价值的信息,直接在空气 - 土壤界面下方 - 难以在该特定位置进行量化的信息,这些信息单独使用原位测量技术。用于多个频带(RAW雷达返回和检索σpQ 0)的反向散射数据的可用性允许在春季和夏季期间研究土壤和植被层内的不同深度的散射效果。因此,对该散射仪数据集的进一步调查提供了在冻结和解冻的水形气象过程中获得新见解的机会,以及如何用多频散射仪观察监测这些过程。数据集可通过https://do.org/10.17026/Dans-zfb-qegy(hofste et?al。,?2021)。通过本文提出的方法处理数据和检索ΣPQ 0的软件代码可以在https://doi.org/10.17026/dans-xyf-fmkk(hofste,?2021)下找到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号