...
首页> 外文期刊>Earth System Dynamics >Bayesian estimation of Earth's climate sensitivity and transient climate response from observational warming and heat content datasets
【24h】

Bayesian estimation of Earth's climate sensitivity and transient climate response from observational warming and heat content datasets

机译:贝叶斯估计地球气候敏感性和瞬态气候响应从观察变暖和热含量数据集

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Future climate change projections, impacts, and mitigation targets are directly affected by how sensitive Earth's global mean surface temperature is to anthropogenic forcing, expressed via the climate sensitivity?( S ) and transient climate response?(TCR). However, the? S and TCR are poorly constrained, in part because historic observations and future climate projections consider the climate system under different response timescales with potentially different climate feedback strengths. Here, we evaluate? S and TCR by using historic observations of surface warming, available since the mid-19th century, and ocean heat uptake, available since the mid-20th century, to constrain a model with independent climate feedback components acting over multiple response timescales. Adopting a Bayesian approach, our prior uses a constrained distribution for the instantaneous Planck feedback combined with wide-ranging uniform distributions of the strengths of the fast feedbacks (acting over several days) and multi-decadal feedbacks. We extract posterior distributions by applying likelihood functions derived from different combinations of observational datasets. The resulting TCR distributions when using two preferred combinations of historic datasets both find a TCR of 1.5 (1.3 to 1.8 at 5–95?% range)? ° C . We find the posterior probability distribution for? S for our preferred dataset combination evolves from? S of 2.0 (1.6 to 2.5)? ° C on a 20-year response timescale to? S of 2.3 (1.4 to 6.4)? ° C on a 140-year response timescale, due to the impact of multi-decadal feedbacks. Our results demonstrate how multi-decadal feedbacks allow a significantly higher upper bound on? S than historic observations are otherwise consistent with.
机译:未来的气候变化预测,影响和缓解目标直接受到敏感的全球平均表面温度是人为强迫的影响,通过气候敏感性表达?(S)和瞬态气候响应?(TCR)。然而? S和TCR受到严重限制,部分原因是历史观察和未来的气候预测在不同的反应时间表下认为气候系统具有潜在不同的气候反馈优势。在这里,我们评估? S和TCR采用历史性观察,自19世纪中叶以来,自20世纪中期以来的海洋热量采用可用,以限制具有独立的气候反馈组件的模型,这些模型作用在多个反应时间表上。我们的先前采用贝叶斯方法,对瞬时普朗克反馈进行了约束分布,结合了快速反馈强度的宽范围均匀分布(作用于几天)和多层反馈。通过应用从观察数据集的不同组合导出的似然函数来提取后分布。使用历史数据集的两个优选组合时产生的TCR分布均发现1.5的TCR(1.3至1.8,在5-95〜1.8级范围内)? °C。我们发现后部概率分布?对于我们首选的数据集组合来发展来自? 2.0(1.6至2.5)的s? °C在20年的响应时间表上到? 2.3(1.4至6.4)的s of 2.3? °C在140年的反应时间尺度,由于多层反馈的影响。我们的结果表明,多层反馈如何允许较高的上限?既符合历史观察也是符合的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号