首页> 外文期刊>International Research Journal of Pure and Applied Chemistry >Ion Exchange: The Most Important Chemical Reaction on Earth after Photosynthesis
【24h】

Ion Exchange: The Most Important Chemical Reaction on Earth after Photosynthesis

机译:离子交换:光合作用后地球上最重要的化学反应

获取原文
           

摘要

Ion exchange is the interchange of equivalent amount of ions from the solution with ions which are swarming in a boundary of charged surface in equilibrium. It is developed due to the presence of charge in the soil colloids or layer lattice clay minerals. The source of charge developed in the colloidal surface site of soil is mainly from two processes viz. isomorphous substitution and pH dependent charge. The charge can be positive or negative due to the exchange reaction in the layer lattice. The ion exchange capacity is the sum of cation exchange capacity (CEC) and anion exchange capacity (AEC). It depends on the types of soil and the amount of charge present in the layer lattice colloidal structure. With high negative charge in the lattice surface the CEC increases and with positive charge the AEC. Ions with higher charge have larger affinity to adsorbed more strongly than lower. Ion exchange capacity in soil has the ability to retained more nutrients in the form of cations or anions making available to plant for a long time which improved the fertility of soil. Leaching loss of different nutrients from the soil is reduced by holding different ions. Ion exchange processes have been widely used for heavy metal removal for waste water treatment and water purification because of its high remedial capacity, high removal efficiency and fast kinetic. Due to its applications in agriculture, environmental management, industries, waste water treatment in mining industries,? laboratory, nanotechnology, geotechnical and other soil reclamation processes it is considered as the second most important reaction in the globe after photosynthesis.
机译:离子交换是从溶液中与离子在平衡中的带电表面边界中蜂拥而道的溶液的交换。由于土壤胶体或晶格粘土矿物中的电荷存在,因此开发。土壤胶体表面部位中发育的电源主要来自两种过程viz。同构替代和pH依赖充电。由于层晶格中的交换反应,电荷可以是正的或阴性的。离子交换能力是阳离子交换能力(CEC)和阴离子交换能力(AEC)的总和。这取决于土壤的类型和层晶格胶体结构中存在的电荷量。在晶格表面中具有高负电荷,CEC增加并用正电荷。具有较高电荷的离子具有更大的亲和力,吸附比降低更强烈。土壤中的离子交换能力能够以阳离子或阴离子的形式保留更多的营养素,这些形式可用于植物的植物长期,这改善了土壤的生育能力。通过握住不同的离子来降低来自土壤的不同营养素的浸出损失。离子交换过程已被广泛用于废水处理和净水的重金属去除,因为其耐补液容量高,脱模效率高,动力学高。由于其在农业,环境管理,产业,采矿工业中废水处理的应用,?实验室,纳米技术,岩土工程和其他土壤填海工艺被认为是光合作用后全球最重要的反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号