首页> 外文期刊>Atmospheric Measurement Techniques Discussions >Detailed characterization of the CAPS single-scattering albedo monitor (CAPS PMssa) as a field-deployable instrument for measuring aerosol light absorption with the extinction-minus-scattering method
【24h】

Detailed characterization of the CAPS single-scattering albedo monitor (CAPS PMssa) as a field-deployable instrument for measuring aerosol light absorption with the extinction-minus-scattering method

机译:详细表征盖子单散射Albedo监视器(CAPS PMSSA)作为用于测量气溶胶光吸收的现场可展开仪器,具有消光 - 减去散射法

获取原文
获取外文期刊封面目录资料

摘要

The CAPS PMssa monitor is a recently commercialized instrument designed to measure aerosol single-scattering albedo (SSA) with high accuracy (Onasch et al., 2015). The underlying extinction and scattering coefficient measurements made by the instrument also allow calculation of aerosol absorption coefficients via the extinction-minus-scattering (EMS) method. Care must be taken with EMS measurements due to the occurrence of large subtractive error amplification, especially for the predominantly scattering aerosols that are typically found in the ambient atmosphere. Practically this means that although the CAPS PMssa can measure scattering and extinction coefficients with high accuracy (errors on the order of 1?%–10?%), the corresponding errors in EMS-derived absorption range from ~10 ?% to greater than 100?%. Therefore, we examine the individual error sources in detail with the goal of constraining these as tightly as possible. Our main focus is on the correction of the scattered light truncation effect (i.e., accounting for the near-forward and near-backward scattered light that is undetectable by the instrument), which we show to be the main source of underlying error in atmospheric applications. We introduce a new, modular framework for performing the truncation correction calculation that enables the consideration of additional physical processes such as reflection from the instrument's glass sampling tube, which was neglected in an earlier truncation model. We validate the truncation calculations against comprehensive laboratory measurements. It is demonstrated that the process of glass tube reflection must be considered in the truncation calculation, but that uncertainty still remains regarding the effective length of the optical cavity. Another important source of uncertainty is the cross-calibration constant that quantitatively links the scattering coefficient measured by the instrument to its extinction coefficient. We present measurements of this constant over a period of ~5 months that demonstrate that the uncertainty in this parameter is very well constrained for some instrument units (2?%–3?%) but higher for others. We then use two example field datasets to demonstrate and summarize the potential and the limitations of using the CAPS PMssa for measuring absorption. The first example uses mobile measurements on a highway road to highlight the excellent responsiveness and sensitivity of the instrument, which enables much higher time resolution measurements of relative absorption than is possible with filter-based instruments. The second example from a stationary field site (Cabauw, the Netherlands) demonstrates how truncation-related uncertainties can lead to large biases in EMS-derived absolute absorption coefficients. Nevertheless, we use a subset of fine-mode-dominated aerosols from the dataset to show that under certain conditions and despite the remaining truncation uncertainties, the CAPS PMssa can still provide consistent EMS-derived absorption measurements, even for atmospheric aerosols with high SSA. Finally, we present a detailed list of recommendations for future studies that use the CAPS PMssa to measure absorption with the EMS method. These recommendations could also be followed to obtain accurate measurements (i.e., errors less than 5?%–10?%) of SSA and scattering and extinction coefficients with the instrument.
机译:CAPS PMSSA监视器是最近商业化的仪器,旨在测量高精度的气溶胶单散射Albedo(SSA)(Onasch等,2015)。仪器制备的底层消光和散射系数测量还允许通过消光 - 减去散射(EMS)方法计算气溶胶吸收系数。由于发生大的减法误差扩增,因此必须使用EMS测量来进行护理,特别是对于通常在环境气氛中发现的主要散射气溶胶。实际上这意味着虽然帽PMSSA可以测量高精度的散射和消光系数(大约1?% - 10?%的误差),但EMS衍生的吸收范围内的相应误差范围为约100%至大于100 ?%。因此,我们详细检查各个错误来源,目的是尽可能紧密地限制这些。我们的主要重点是纠正散射光截断效果(即,仪器无法察觉的近前后散射光),我们展示是大气应用中潜在误差的主要来源。我们介绍了一种用于执行截断校正计算的新的模块化框架,这使得能够考虑诸如从仪器的玻璃采样管的反射的额外物理过程,这在早期截断模型中被忽略。我们验证了综合实验室测量的截断计算。证明必须在截断计算中考虑玻璃管反射的过程,但是不确定性仍然仍然是光学腔的有效长度。另一个重要的不确定来源是横校验常数,其定量将通过仪器测量的散射系数链接到其消光系数。我们在〜5个月的时间内显示了这种常数的测量,表明该参数的不确定性对于某些仪器单元(2?% - 3?%)而言非常受到很好的限制,但对于其他仪器单元而言。然后,我们使用两个示例现场数据集来展示和总结使用CAPS PMSSA以测量吸收的潜力和限制。第一个示例使用高速公路公路上的移动测量来突出仪器的出色响应性和灵敏度,这使得能够高度吸收的时间分辨率比与基于滤光器的仪器相对吸收。来自静止现场网站(Cabauw,荷兰)的第二个例子展示了与EMS衍生的绝对吸收系数中的截断相关的不确定性如何导致大偏差。尽管如此,我们使用来自数据集的细模主导的气溶胶的子集来表明,在某些条件下,尽管截断不确定性仍然存在截断,但仍然可以提供一致的EMS衍生的吸收测量,即使对于具有高SSA的大气气溶胶,也可以提供一致的EMS衍生的吸收测量。最后,我们为未来的研究提供了详细的建议列表,该研究使用CAPS PMSSA测量与EMS方法的吸收。也可以遵循这些建议,以获得准确的测量(即,误差小于5?% - 10?%)SSA和散射和探测器的消光系数。

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号