首页> 外文期刊>Atmospheric Measurement Techniques >Using machine learning to model uncertainty for water vapor atmospheric motion vectors
【24h】

Using machine learning to model uncertainty for water vapor atmospheric motion vectors

机译:利用机器学习来模拟水蒸气大气运动向量的不确定性

获取原文
           

摘要

Wind-tracking algorithms produce atmospheric motion vectors (AMVs) by tracking clouds or water vapor across spatial–temporal fields. Thorough error characterization of wind-tracking algorithms is critical in properly assimilating AMVs into weather forecast models and climate reanalysis datasets. Uncertainty modeling should yield estimates of two key quantities of interest: bias, the systematic difference between a measurement and the true value, and standard error, a measure of variability of the measurement. The current process of specification of the errors in inverse modeling is often cursory and commonly consists of a mixture of model fidelity, expert knowledge, and need for expediency. The method presented in this paper supplements existing approaches to error specification by providing an error characterization module that is purely data-driven. Our proposed error characterization method combines the flexibility of machine learning (random forest) with the robust error estimates of unsupervised parametric clustering (using a Gaussian mixture model). Traditional techniques for uncertainty modeling through machine learning have focused on characterizing bias but often struggle when estimating standard error. In contrast, model-based approaches such as k -means or Gaussian mixture modeling can provide reasonable estimates of both bias and standard error, but they are often limited in complexity due to reliance on linear or Gaussian assumptions. In this paper, a methodology is developed and applied to characterize error in tracked wind using a high-resolution global model simulation, and it is shown to provide accurate and useful error features of the tracked wind.
机译:风力跟踪算法通过跟踪空间颞田的云或水蒸气产生大气运动向量(AMV)。风力跟踪算法的彻底误差表征在适当地同化AMV进入天气预报模型和气候再分析数据集时至关重要。不确定性建模应产生两个关键数量的估计值:偏置,测量和真值之间的系统差异,以及标准误差,测量测量的可变性。反向建模中的误差的目前规范的过程通常是诸如模型保真度,专业知识和需要方便的混合。本文呈现的方法通过提供纯粹数据驱动的错误表征模块,补充现有的误差规范方法。我们所提出的错误表征方法将机器学习(随机林)的灵活性与无监督参数群集的强大误差估计相结合(使用高斯混合模型)。通过机器学习的不确定性建模的传统技术集中于表征偏置,但在估计标准误差时常常斗争。相反,基于模型的方法,如K-Means或高斯混合模型,可以提供偏差和标准误差的合理估计,但由于依赖于线性或高斯假设,它们通常受到影响的复杂性。在本文中,使用高分辨率全局模型仿真开发和应用方法,以表征跟踪风中的误差,并显示出跟踪风的准确和有用的误差特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号