首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Impacts of secondary ice production on Arctic mixed-phase clouds based on ARM observations and CAM6 single-column model simulations
【24h】

Impacts of secondary ice production on Arctic mixed-phase clouds based on ARM observations and CAM6 single-column model simulations

机译:基于ARM观测和CAM6单列模拟模拟的二次冰产对北极混合相云的影响

获取原文
           

摘要

For decades, measured ice crystal number concentrations have been found to be orders of magnitude higher than measured ice-nucleating particle number concentrations in moderately cold clouds. This observed discrepancy reveals the existence of secondary ice production (SIP) in addition to the primary ice nucleation. However, the importance of SIP relative to primary ice nucleation remains highly unclear. Furthermore, most weather and climate models do not represent SIP processes well, leading to large biases in simulated cloud properties. This study demonstrates a first attempt to represent different SIP mechanisms (frozen raindrop shattering, ice–ice collisional breakup, and rime splintering) in a global climate model (GCM). The model is run in the single column mode to facilitate comparisons with the Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE) observations. We show the important role of SIP in four types of clouds during M-PACE (i.e., multilayer, single-layer stratus, transition, and frontal clouds), with the maximum enhancement in ice crystal number concentrations up to 4 orders of magnitude in moderately supercooled clouds. We reveal that SIP is the dominant source of ice crystals near the cloud base for the long-lived Arctic single-layer mixed-phase clouds. The model with SIP improves the occurrence and phase partitioning of the mixed-phase clouds, reverses the vertical distribution pattern of ice number concentrations, and provides a better agreement with observations. The findings of this study highlight the importance of considering SIP in GCMs.
机译:几十年来,已发现测量的冰晶数量浓度比中等冷云中测量的冰成核颗粒数浓度高的数量级。这种观察到的差异揭示了除原发性冰核外的二次冰产量(SIP)的存在。然而,SIP相对于原发性冰成核的重要性仍然尚不清楚。此外,大多数天气和气候模型都不代表SIP流程,导致模拟云属性中的大偏差。本研究表明,在全球气候模型(GCM)中首次尝试代表不同的SIP机制(冷冻雨水碎片,冰冰碰撞和霜夹)。该模型在单列模式下运行,以便于与能量部(DOE)的大气辐射测量(ARM)混合阶段北极云实验(M-PACE)观测的比较。我们在M-Space(即多层,单层Stratus,转换和额云)期间,SIP在四种云中显示了SIP的重要作用,冰晶数量浓度最大增强了适度的4个数量级过冷云。我们揭示了SIP是长期北极单层混合阶段云附近云底部附近的冰晶的主要来源。 SIP模型改善了混合相云的发生和相位分区,反转了冰数浓度的垂直分布模式,并提供了更好的观察结果。本研究的结果强调了考虑SIP在GCMS中的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号