首页> 外文期刊>Case Studies in Thermal Engineering >Thermal performance of GO-MoS2/ engine oil as Maxwell hybrid nanofluid flow with heat transfer in oscillating vertical cylinder
【24h】

Thermal performance of GO-MoS2/ engine oil as Maxwell hybrid nanofluid flow with heat transfer in oscillating vertical cylinder

机译:Go-MOS2 /发动机油的热性能作为MaxWell杂交纳米流体流动,在振荡垂直圆柱体中具有传热

获取原文
       

摘要

Engine oil (EO) is used as a lubricant in the engines of different machineries. The basic need of all phenomena is the rate of heat transfer. To enhance the rate of heat transfer and to save the energy wasted due to high temperature. For this reason in the present study we have taken engine oil as base fluid and molybdenum disulphide and graphene oxide (MoS2 + GO) hybrid nano-composites are suspended in the (EO). Furthermore, the nonlinear nature of viscoelastic non-Newtonian fluids, introduce a unique challenge to physicists and mathematicians. In the past three decades, viscoelastic fluid models are focused to improve its accuracy and reliability. In this article, viscoelastic Maxwell (MoS2 + GO) hybrid nanofluid (MHNF) is considered in oscillating cylindrical tube together with heat transfer. Exact solutions are obtained by using the joint applications of the Laplace and Hankel transforms and the obtained results are portrayed through different figures. All the figures of the given flow model are constructed for unitary nanofluid (MoS2 + EO) as well as hybrid nanofluid (GO + MoS2 + EO). Effects of flow parameters on Maxwell fluid velocity have shown through graph using computational software MATHCAD. From the present study, we have concluded that hybrid nanofluid gives us more satisfactory results than unitary nanofluid. During this analysis we found that the Maxwell hybrid nanofluid (GO + MoS2 + EO) enhance the rate of heat transfer up to 23.17 %. Furthermore, it is worth noting that engine oil has many engineering and industrial applications. Keeping this fact in mind the present study will help to enhance the rate of heat transfer due to which working machines will do better performance and the loss of useful energy will be reduced. Finally, we have present a limiting case by putting Maxwell fluid parameter (λ = 0) our solutions reduced to well-known published results which validate our work.
机译:发动机油(EO)用作不同机械发动机的润滑剂。所有现象的基本需要是传热速度。提高热传递速率,并通过高温节省浪费的能量。因此,在本研究中,我们已将发动机油作为基础流体和钼二硫化物和石墨烯(MOS2 + GO)杂交纳米复合材料悬浮在(EO)中。此外,粘弹性非牛顿流体的非线性性质,对物理学家和数学家带来了独特的挑战。在过去的三十年中,粘弹性流体模型集中于提高其准确性和可靠性。在本文中,在振荡圆柱形管与热传递一起考虑粘弹性麦克风(MOS2 + GO)杂种纳米流体(MHNF)。通过使用Laplace和Hankel变换的关节应用获得确切的解决方案,并且通过不同的数字描绘了所获得的结果。给定流量模型的所有图形是用于单一的纳米流体(MOS2 + EO)以及杂交纳米流体(GO + MOS2 + EO)。流动参数对Maxwell流体速度的影响,通过使用计算软件Mathcad通过图表显示。从本研究中,我们得出结论,杂交纳米流体赋予我们比单一纳米流体更令人满意的结果。在该分析期间,我们发现麦克风杂交纳米流体(GO + MOS2 + EO)增强了高达23.17%的热转印速度。此外,值得注意的是,发动机油具有许多工程和工业应用。请记住这一事实,本研究将有助于提高传热速度,因为哪些工作机器可以做得更好的性能,并且将减少有用能量的损失。最后,我们通过将Maxwell流体参数(λ= 0)施加到验证我们工作的众所周知的公布结果,提出了一个限制的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号