首页> 外文期刊>Case Studies in Thermal Engineering >Numerical analysis of passive cooled ultra-high concentrator photovoltaic cell using optimal heat spreader design
【24h】

Numerical analysis of passive cooled ultra-high concentrator photovoltaic cell using optimal heat spreader design

机译:最优散热器设计无源冷却超高集团光伏电池的数值分析

获取原文
获取外文期刊封面目录资料

摘要

In the high concentrator photovoltaic (HCPV) systems with solar concentration ratios up to 2000 Suns, signifcant heat is generated in the used solar cell layer. This high generated heat requires an effcient and smart cooling technique to keep it operating at a safe operating temperature. In this paper, another ultra-high concentrator photovoltaic (UHCPV) system with a smaller cell area of 1 mm2 operating at a high solar concentration ratio (CR) up to 10,000 Suns is proposed. This smaller area requires a simple passive cooling technique even at high CR. The optimal dimensions of a passive cooling method using heat spreader are defned. A 3D thermal model for the multijunction solar cell with the heat spreader coupled with the multi-objective genetic optimization algorithm is used to defne the optimal heat spreader dimensions . The model is validated with the results in the literature. The model is used to estimate the cell temperature generated electric power, and cell effciency at different wind speed, ambient temperature, solar radiation, heat spreader length, thickness, and CR. The heat spreader dimensions were optimized for CR = 6000 suns, the optimal thickness and length were 2 mm and a of 47.5 mm, respectively. These dimensions are enough for the safe operation of the UHCPV at CR of 6000 Suns. As a case study, for a UHCPV module with a total number of cells of 10 by 10, the generated power is around 319 W at CR of 10,000 Suns. At the same condition, the monocrystalline silicon solar cell in the PERSEID SOLAR company can generate a maximum power of 144.9 W/m2. For the same area, for the UHCPV module, the generated electric power is around 319 W for 1 m2 of the module. Therefore, around 120% increase in the power can be accomplished with the use of the UHCPV module. In the UHCPV module, the total area of the cell is around 1 cm by 1 cm. Therefore, the module cost could be very low.
机译:在高分子光伏(HCPV)系统中,具有太阳能浓度比率,高达2000个太阳,在使用的太阳能电池层中产生显着的热量。这种高产生的热量需要效率和智能冷却技术,以保持其在安全工作温度下操作。在本文中,提出了另一种超高聚光器光伏(UHCPV)系统,其具有以高太阳浓度比(CR)的1mm 2的较小细胞面积,高达10,000个太阳。即使在高CR,这个较小的区域也需要简单的被动冷却技术。使用散热器的无源冷却方法的最佳尺寸被缝合。用于多连接太阳能电池的3D热模型与多目标遗传优化算法耦合的散热器,用于缩放最佳散热器尺寸。该模型验证了文献中的结果。该模型用于估计电池温度产生的电力,以及不同风速,环境温度,太阳辐射,散热器长度,厚度和Cr的电池效率。散热器尺寸针对Cr = 6000阳光进行了优化,最佳厚度和长度分别为2毫米和47.5毫米。这些尺寸足以让UHCPV在6000个太阳的CR安全操作。作为一个案例研究,对于UHCPV模块具有10到10的电池总数,所产生的功率约为319W,在10,000个太阳下。在相同的条件下,Perseid Solar公司的单晶硅太阳能电池可以产生144.9 W / M2的最大功率。对于相同的区域,对于UHCPV模块,所产生的电力约为319W,对于模块的1平方米。因此,可以通过使用UHCPV模块来实现大约120%的功率增加。在UHCPV模块中,电池的总面积约为1厘米1厘米。因此,模块成本可能非常低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号