首页> 外文期刊>BMC Microbiology >New perspectives on butyrate assimilation in Rhodospirillum rubrum S1H under photoheterotrophic conditions
【24h】

New perspectives on butyrate assimilation in Rhodospirillum rubrum S1H under photoheterotrophic conditions

机译:rhodostoTillum rubrum s1h丁酸盐同化的新观点

获取原文
           

摘要

The great metabolic versatility of the purple non-sulfur bacteria is of particular interest in green technology. Rhodospirillum rubrum S1H is an α-proteobacterium that is capable of photoheterotrophic assimilation of volatile fatty acids (VFAs). Butyrate is one of the most abundant VFAs produced during fermentative biodegradation of crude organic wastes in various applications. While there is a growing understanding of the photoassimilation of acetate, another abundantly produced VFA, the mechanisms involved in the photoheterotrophic metabolism of butyrate remain poorly studied. In this work, we used proteomic and functional genomic analyses to determine potential metabolic pathways involved in the photoassimilation of butyrate. We propose that a fraction of butyrate is converted to acetyl-CoA, a reaction shared with polyhydroxybutyrate metabolism, while the other fraction supplies the ethylmalonyl-CoA (EMC) pathway used as an anaplerotic pathway to replenish the TCA cycle. Surprisingly, we also highlighted a potential assimilation pathway, through isoleucine synthesis and degradation, allowing the conversion of acetyl-CoA to propionyl-CoA. We tentatively named this pathway the methylbutanoyl-CoA pathway (MBC). An increase in isoleucine abundance was observed during the early growth phase under butyrate condition. Nevertheless, while the EMC and MBC pathways appeared to be concomitantly used, a genome-wide mutant fitness assay highlighted the EMC pathway as the only pathway strictly required for the assimilation of butyrate. Photoheterotrophic growth of Rs. rubrum with butyrate as sole carbon source requires a functional EMC pathway. In addition, a new assimilation pathway involving isoleucine synthesis and degradation, named the methylbutanoyl-CoA (MBC) pathway, could also be involved in the assimilation of this volatile fatty acid by Rs. rubrum.
机译:紫色非硫细菌的巨大代谢多功能性对绿色技术特别感兴趣。 rhodospirillum rubrum s1h是一种α-植物,其能够选择挥发性脂肪酸(VFA)的光检查辅助同化。丁酸盐是在各种应用中发酵生物降解过程中产生的最丰富的VFA之一。虽然对醋酸盐的光磷酸化的越来越高兴,但另一个大量产生的VFA,所涉及的丁酸盐的光检查代谢的机制仍然很差。在这项工作中,我们使用蛋白质组学和功能基因组分析来确定丁酸丁酸的光碱基中涉及的潜在代谢途径。我们提出将丁酸盐的一小部分转化为乙酰-CoA,与聚羟丁酯代谢共用的反应,而另一部分供应用作翼状胬肉途径以补充TCA循环的乙基甘油基-CoA(EMC)途径。令人惊讶的是,我们还突出了潜在的同化途径,通过异亮氨酸合成和降解,从而使乙酰-CoA转化为丙酰基-CoA。我们暂时命名为该途径甲基丁酰基 - COA途径(MBC)。在丁酸盐条件下的早期生长相期间观察到异亮氨酸丰度的增加。尽管如此,虽然EMC和MBC途径似乎伴随着,但是一个基因组 - 突变体适应性测定突出了EMC途径,因为丁酸丁酸的同化严格所需的唯一途径。 PhotoherSot营养级生长卢比。用丁酸盐作为唯一碳源的rubrum需要功能性EMC途径。此外,涉及异氨酸合成和降解的新的同化途径,也可以参与该挥发性脂肪酸的同化rs。 rubrum。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号