首页> 外文期刊>Shock and vibration >Multiobjective Hydraulic Design and Performance Analysis of a Vortex Pump Based on Orthogonal Tests
【24h】

Multiobjective Hydraulic Design and Performance Analysis of a Vortex Pump Based on Orthogonal Tests

机译:基于正交试验的Vortex泵的多目标水力设计与性能分析

获取原文
           

摘要

We design optimization on the overall blade structure of a vortex pump conducted by using the orthogonal test method to clarify the matching relationship of impeller and casing structures and then improve the hydraulic performance of the vortex pump. Based on two different impeller structures of forward-deflecting (denoted as R 1 ??? F 2 ) and backward-deflecting (denoted as F 1 ??? R 2 ), key parameters describing the impeller structure are calculated through optimization for the objective function of hydraulic efficiency by means of orthogonal tests and computational fluid dynamic simulations. Optimization computations show that the forward-deflecting blade impeller is superior to the backward-deflecting one. Model test of the optimized vortex pump is carried out calculating the error from the comparison of pump efficiencies calculated by model test and numerical simulation is calculated to be less than 6%. The experimental verification shows that the flow simulation has some errors. The weight of structure parameters such as the blade installation angle ( α ), the blade deflecting angle ( β ), the position of blade deflecting point ( L ), the radius ( r ) of smoothing arc at the deflecting point, the wedge type ( W ) of blade, to the lift head, the flow rate, and the efficiency of the pump is investigated, through multiparameter optimizations. Visualization observation of flows in the model pump consisted of a back-placed impeller and a front vaneless chamber is further performed. The characteristic of vortex formation predicted by flow simulation agrees with the result of visualization observation. The above results demonstrate that the optimum impeller type of vortex pump is forward-deflecting blade impeller. The optimum combination of the key structure parameters is that the deflection angle of the blade inlet ( α ) equals 30°, the position of blade deflecting point l M ?=?2/3?L, the chamfering radius ( r ) at the deflecting point r ?=?3?mm, and the best wedge type is axial deflecting blade.
机译:我们在通过使用正交试验方法进行涡旋泵的整体叶片结构的优化,以阐明叶轮和套管结构的匹配关系,然后提高涡流泵的液压性能。基于两种不同的叶轮结构的正向偏转(表示为R 1 ??? F 2)和向后偏转(表示为F 1 ??? R 2),通过优化目标来计算描述叶轮结构的关键参数液压效率通过正交试验和计算流体动态模拟功能。优化计算表明,前偏转叶片叶轮优于向后偏转。优化Vortex泵的模型试验进行了通过模型测试计算的泵效率的比较计算误差,数值模拟计算为小于6%。实验验证表明,流动模拟有一些错误。结构参数的重量,例如叶片安装角度(α),叶片偏转角(β),叶片偏转点(L)的位置,楔形件在偏转点处的平滑弧的半径(R)( W)叶片,升降机,流速,流速和泵的效率通过多分钟优化来研究。进一步执行由后放置叶轮和前方无形腔室组成的模型泵中流动的可视化观察。通过流动模拟预测的涡旋形成的特征与可视化观察结果的结果同意。上述结果表明,最佳叶轮泵型涡流泵是正向偏转叶片叶轮。关键结构参数的最佳组合是叶片入口(α)的偏转角等于30°,叶片偏转点Lm≤°=Δ2/3≤1,偏转的倒角半径(r)点R?=?3?mm,最好的楔形型是轴向偏转刀片。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号