...
首页> 外文期刊>Nuclear Materials and Energy >Modeling of liquid lithium flow in porous plasma facing material
【24h】

Modeling of liquid lithium flow in porous plasma facing material

机译:多孔等离子体面向材料中液态锂流的建模

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Flowing liquid lithium can, in principle, create a renewable surface interacting with the plasma, providing protection for the underlying solid substrate. Recent experiments [1] showed that liquid lithium supplied through a porous medium can limit the plasma facing surface temperature, even at high heat flux values in excess of 10?MW/m2. The use of new 3D printing techniques allows creation of plasma facing components that supply liquid lithium through capillary channels. Numerical analysis can be used to develop and optimize porous plasma facing component using virtual prototyping. The present contribution introduces a numerical model of liquid metal flow in a porous structure, interacting with the plasma. The model uses computational fluid dynamics (CFD) to model a flow through a complex 3D geometry including magneto-hydrodynamics (MHD) effects. The CFD set-up covers the liquid metal, plasma and solid structures, simultaneously, connected by realistic interfaces. Small scale interface structures are modeled separately to obtain a self-consistent interface functions. Customized version of the general-purpose CFD is used to handle complex 3D geometries, and efficient pre- and post-processing. MHD is introduced using the magnetic vector potential approach, allowing precise fluid–solid interface treatment. Special stabilization procedures were derived and applied to improve convergence of the momentum balance equations with source terms due to Lorentz force and surface tension. Conjugate heat transfer analysis was performed in the plasma, liquid metal and solid components. The customized code was validated using analytical results for high Hartmann number flow. Results of the validation and numerical analysis of liquid lithium plasma facing components using porous walls will be presented.
机译:原则上,流动的液体锂可以产生与等离子体相互作用的可再生表面,为下面的固体基材提供保护。最近的实验[1]表明,通过多孔介质供应的液体锂可以限制面向表面温度的等离子体,即使在超过10μm/ m 2的高热量值。新的3D打印技术的使用允许通过毛细管通道产生供应液体锂的等离子体面向组件。数值分析可用于使用虚拟原型设计开发和优化多孔等离子体面向部件。本贡献引入了多孔结构中液态金属流量的数值模型,与等离子体相互作用。该模型使用计算流体动力学(CFD)来通过包括磁力流体动力学(MHD)效应的复杂3D几何形状来模拟流动。 CFD设定覆盖液态金属,等离子体和实心结构,同时通过现实界面连接。小规模接口结构是单独建模的,以获得自我一致的接口功能。自定义版本的通用CFD用于处理复杂的3D几何形状,高效的预处理和后处理。使用磁性矢量电位方法引入MHD,允许精确的流体固体界面处理。由于洛伦兹力和表面张力,得出了特殊稳定程序,以改善具有源术语的动量平衡方程的收敛性。在等离子体,液态金属和固体组分中进行共轭传热分析。使用分析结果进行自定义代码,用于高HARTMANN号流。呈提出了使用多孔壁的液体锂等离子体面向部件的验证和数值分析的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号