首页> 外文期刊>Mechanical Engineering Journal >Analysis of gas entrainment phenomenon from free liquid surface for a sodium-cooled fast reactor design (Velocity profile and Strouhal number in a flow field)
【24h】

Analysis of gas entrainment phenomenon from free liquid surface for a sodium-cooled fast reactor design (Velocity profile and Strouhal number in a flow field)

机译:从钠冷却的快速反应器设计中自由液面的气体夹带现象分析(流场中的速度曲线和Strouhal数)

获取原文
           

摘要

Gas entrainment (GE) from cover gas, which is an inert gas to cover sodium coolant in the reactor vessel, is one of the key issues for Sodium-cooled fast reactors (SFRs) design to prevent unexpected effects to core reactivity. In this research series, evaluation method has been investigated for surface dimple depth growth of unstable drifting vortex dimples on the liquid surface in the reactor vessel. By using a computational fluid dynamics (CFD) code, analyses have been conducted to estimate the drifting vortex on water experiments in a circulating water tunnel. The unstable drifting flow vortexes on the water surface were generated as wake vortexes behind a plate obstacle. Downward flow velocity was induced by the bottom slit’s flow passing along the flow channel. In the previous study, the initial conditions of the gas entrainment were evaluated based on existing non-dimensional numbers method by using the STREAM-VIEWER code. However, the CFD predication accuracy of the detailed flow field itself was not clear especially for vortex frequency in the wake flow and detailed velocity profiles in the flow channel. In this study, to clarify the accuracy of CFD analysis, Strouhal numbers of vortex frequency and detailed flow velocity profiles were compared with experimental data which were measured by Particle Image Velocimetry (PIV) method. As the results, the Strouhal numbers of the vortex frequency behind the plate obstacle reasonably agreed with the experimental data.
机译:来自覆盖气体的气体夹带(Ge),其是覆盖反应器容器中的钠冷却剂的惰性气体,是钠冷却的快速反应器(SFRS)设计的关键问题之一,以防止意外影响核心反应性。在本研究系列中,已经研究了评估方法,用于在反应器容器中的液体表面上的不稳定漂移涡流凹坑的表面凹坑深度生长。通过使用计算流体动力学(CFD)代码,已经进行了分析以估计循环水隧道中的水实验上的漂移涡流。水面上的不稳定漂移流动涡旋被产生为板块障碍物后面的苏醒涡旋。通过沿着流动通道的底部狭缝的流动引起向下的流速。在先前的研究中,通过使用流查看器代码基于现有的非尺寸数字方法评估气体夹带的初始条件。然而,详细流动场本身的CFD预测精度不清楚,特别是在唤醒流程中的涡流频率和流动通道中的详细速度分布。在本研究中,为了阐明CFD分析的准确性,将涡旋频率和详细的流速谱的斯特鲁姆数与通过粒子图像速度(PIV)法测量的实验数据进行比较。作为结果,与实验数据合理同意的板障碍后面的涡流频率的斯特鲁姆数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号