首页> 外文期刊>EPJ Web of Conferences >NUMA-AWARE DATA MANAGEMENT FOR NEUTRON CROSS SECTION DATA IN CONTINUOUS ENERGY MONTE CARLO NEUTRON TRANSPORT SIMULATION
【24h】

NUMA-AWARE DATA MANAGEMENT FOR NEUTRON CROSS SECTION DATA IN CONTINUOUS ENERGY MONTE CARLO NEUTRON TRANSPORT SIMULATION

机译:Numa感知中子横截面数据的数据管理连续能量蒙特卡罗中子传输模拟

获取原文
           

摘要

The calculation of macroscopic neutron cross-sections is a fundamental part of the continuous-energy Monte Carlo (MC) neutron transport algorithm. MC simulations of full nuclear reactor cores are computationally expensive, making high-accuracy simulations impractical for most routine reactor analysis tasks because of their long time to solution. Thus, preparation of MC simulation algorithms for next generation supercomputers is extremely important as improvements in computational performance and efficiency will directly translate into improvements in achievable simulation accuracy. Due to the stochastic nature of the MC algorithm, cross-section data tables are accessed in a highly randomized manner, resulting in frequent cache misses and latency-bound memory accesses. Furthermore, contemporary and next generation non-uniform memory access (NUMA) computer architectures, featuring very high latencies and less cache space per core, will exacerbate this behaviour. The absence of a topology-aware allocation strategy in existing high-performance computing (HPC) programming models is a major source of performance problems in NUMA systems. Thus, to improve performance of the MC simulation algorithm, we propose a topology-aware data allocation strategies that allow full control over the location of data structures within a memory hierarchy. A new memory management library, known as AML, has recently been created to facilitate this mapping. To evaluate the usefulness of AML in the context of MC reactor simulations, we have converted two existing MC transport cross-section lookup “proxy-applications” (XSBench and RSBench) to utilize the AML allocation library. In this study, we use these proxy-applications to test several continuous-energy cross-section data lookup strategies (the nuclide grid, unionized grid, logarithmic hash grid, and multipole methods) with a number of AML allocation schemes on a variety of node architectures. We find that the AML library speeds up cross-section lookup performance up to 2x on current generation hardware (e.g., a dual-socket Skylake-based NUMA system) as compared with naive allocation. These exciting results also show a path forward for efficient performance on next-generation exascale supercomputer designs that feature even more complex NUMA memory hierarchies.
机译:宏观中子截面的计算是连续能量蒙特卡罗(MC)中子传输算法的基本部分。全核反应堆核心的MC模拟是计算昂贵的,为大多数常规反应堆分析任务进行高精度模拟,因为它们很长一段时间。因此,对于下一代超级计算机的MC仿真算法的准备是极为重要的,因为计算性能和效率的改进将直接转化为可实现的模拟精度的改进。由于MC算法的随机性,横截面数据表以高度随机的方式访问,导致频繁的高速缓存未命中和延迟绑定的存储器访问。此外,当代和下一代非统一内存访问(NUMA)计算机架构,每个核心具有非常高的延迟和更少的缓存空间,将加剧此行为。在现有的高性能计算(HPC)编程模型中没有拓扑知识的分配策略是NUMA系统中性能问题的主要来源。因此,为了提高MC仿真算法的性能,我们提出了一种拓扑感知数据分配策略,其允许完全控制存储层中的数据结构的位置。最近创建了一个新的内存管理库,称为AML,以便于此映射。为了评估AML在MC反应堆模拟的上下文中的有用性,我们已将两个现有的MC传输横截面查找“代理应用程序”(XSBench和RSBench)转换为使用AML分配库。在本研究中,我们使用这些代理应用程序在各种节点上使用多个AML分配方案测试多个连续能量横截面数据查找策略(核素网格,工会网格,对数哈希网格和多极方法)建筑。我们发现,与天真分配相比,AML库在当前一代硬件上加快了高达2x的横截面查找性能,高达2倍的电流硬件(例如,基于双插座Skylake的Numa系统)。这些令人兴奋的结果还显示了一种在下一代EnaScale超级计算机设计上进行高效性能的道路,该设计具有更复杂的NUMA内存层次结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号