首页> 外文期刊>Journal of Materials Research and Technology >Microstructure formation and columnar to equiaxed transition during cold crucible directional solidification of a high-Nb TiAl alloy
【24h】

Microstructure formation and columnar to equiaxed transition during cold crucible directional solidification of a high-Nb TiAl alloy

机译:高Nb Tial合金冷坩埚定向凝固过程中的微观结构形成和柱状转变

获取原文
           

摘要

In order to study the factors of columnar to equiaxed transition (CET) of high-Nb TiAl alloys, Ti46Al7Nb0.4W0.6Cr0.1B alloy has been fabricated by cold crucible directional solidification (CCDS) technique under different pulling rate from 3.3?μm/s to 16.7?μm/s. The marco/micro-structure and phase composition near solid–liquid interface have been characterized. Results show that the CET of the high-Nb TiAl alloy occurs with the increase of the pulling rate at the constant temperature gradient. The microstructure of the columnar grain is composed of α2/γ lamellar matrix and a coupling structure of striped-like B2+γ phases. The lamellar colonies in a columnar grain possess the same orientation, while the arrangement direction between the striped-like B2 phase and growth direction is 0° or 45°. A solidification map for CCDS is established which predicts columnar or equiaxed morphology according to the growth rate (R) and temperature gradient (G). The dendrite morphology at the solid–liquid interface after quenching and the CET is controlled by the actual temperature gradient at the tip of the dendrite. Meanwhile, the increase of growth rate and the satisfaction of heterogeneous nucleation conditions are the main factors for CET. The decrease of actual temperature gradient caused by quenching or the increase of liquidus gradient caused by increasing growth rate can increase the maximum supercooling degreeΔTC. When it reached the supercooling degreeΔTNrequired to form a new nucleus, equiaxed grains will be produced. In addition, the boride in this alloy can act as a heterogeneous nucleation core to promote CET.
机译:为了研究高Nb Tial合金的柱状柱状转变(CET)的因素,通过从3.3Ωμm/μm/μm/ S至16.7?μm/ s。已经表征了固体液体界面附近的Marco /微结构和相位组合物。结果表明,高Nb Tial合金的CET随着恒温梯度的拉伸速率的增加而发生。柱状晶粒的微观结构由α2/γ层状基质和条纹状B2 +γ相的偶联结构组成。柱状颗粒中的层状菌落具有相同的取向,而条纹状B2相位和生长方向之间的布置方向为0°或45°。根据生长速率(R)和温度梯度(G),建立了CCD的凝固图,其预测柱状或等轴形态。在淬火和CET之后的固液界面处的树突形态由树突尖端的实际温度梯度控制。同时,增长率的增加和异质成核条件的满足是CET的主要因素。由淬火或通过增加生长速率引起的液相梯度增加的实际温度梯度降低可以增加最大过冷却度ΔTc。当它到达过冷却度ΔTnrequired以形成新的细胞核时,将产生等轴的晶粒。此外,这种合金中的硼化物可以充当异质核心核心以促进CET。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号