...
首页> 外文期刊>Journal of King Saud University >Generalized non-integer Lennard-Jones potential function vs. generalized Morse potential function for calculating cohesive energy and melting point of nanoparticles
【24h】

Generalized non-integer Lennard-Jones potential function vs. generalized Morse potential function for calculating cohesive energy and melting point of nanoparticles

机译:广义非整数Lennard-Jones潜在功能与纳米粒子粘性能量和熔点的通用摩尔斯势功能

获取原文
   

获取外文期刊封面封底 >>

       

摘要

A generalized non-integer Lennard-Jones (L-J) potential function with an additional parametermis proposed to calculate the cohesive energy and melting point of nanoparticles. The model based on the new generalized non-integer L-J potential function has been successful in predicting experimental values. The calculated cohesive energies show an excellent agreement with the experimental values of the cohesive energies of molybdenum (Mo) and tungsten (W) nanoparticles (Kim et al., 2002). Moreover, the calculated melting points based on the generalized non-integer L-J potential function agree with the experimental values for large gold (Au) nanoparticles includingn≥1000atoms (Buffat and Borel, 1976) and small silica-encapsulated gold (Au) nanoparticles includingn≤1500atoms (Dick et al., 2002). The stability of nanoparticles is due to two conditions: the increase of the range of the attractive force and the high gradient attractive interaction in the potential function whenrij≈r0.
机译:一种推广的非整数Lennard-Jones(L-J)潜在功能,提出了另外的parametermis来计算纳米颗粒的粘性能量和熔点。基于新的广义非整数L-J电位功能的模型在预测实验值方面取得了成功。计算出的粘性能量显示出与钼(Mo)和钨(W)纳米颗粒的粘性能量的实验值进行了很好的一致性(Kim等人,2002)。此外,基于广义非整数LJ潜在功能的计算熔点与包括N≥10000(Buffat和Borel,1976)的大金(Au)纳米颗粒的实验值和包括N≤的小二氧化硅包封的金(Au)纳米颗粒。 1500OTOM(迪克等,2002)。纳米颗粒的稳定性是由于两个条件:当潜在函数时,吸引力的范围和高梯度有吸引力的相互作用在潜在的函数时。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号