首页> 外文期刊>Journal of Advances in Modeling Earth Systems >The ECCO‐Darwin Data‐Assimilative Global Ocean Biogeochemistry Model: Estimates of Seasonal to Multidecadal Surface Ocean pCO2 and Air‐Sea CO2 Flux
【24h】

The ECCO‐Darwin Data‐Assimilative Global Ocean Biogeochemistry Model: Estimates of Seasonal to Multidecadal Surface Ocean pCO2 and Air‐Sea CO2 Flux

机译:Ecco-Darwin数据吸收全球海洋生物地球化学模式:估计季节性对多型地面海洋PCO2和空中海洋二氧化碳通量的估计

获取原文
获取外文期刊封面目录资料

摘要

Quantifying variability in the ocean carbon sink remains problematic due to sparse observations and spatiotemporal variability in surface ocean pCO2. To address this challenge, we have updated and improved ECCO‐Darwin, a global ocean biogeochemistry model that assimilates both physical and biogeochemical observations. The model consists of an adjoint‐based ocean circulation estimate from the Estimating the Circulation and Climate of the Ocean (ECCO) consortium and an ecosystem model developed by the Massachusetts Institute of Technology Darwin Project. In addition to the data‐constrained ECCO physics, a Green's function approach is used to optimize the biogeochemistry by adjusting initial conditions and six biogeochemical parameters. Over seasonal to multidecadal timescales (1995–2017), ECCO‐Darwin exhibits broad‐scale consistency with observed surface ocean pCO2 and air‐sea CO2 flux reconstructions in most biomes, particularly in the subtropical and equatorial regions. The largest differences between CO2 uptake occur in subpolar seasonally stratified biomes, where ECCO‐Darwin results in stronger winter uptake. Compared to the Global Carbon Project OBMs, ECCO‐Darwin has a time‐mean global ocean CO2 sink (2.47?±?0.50?Pg?C?year?1) and interannual variability that are more consistent with interpolation‐based products. Compared to interpolation‐based methods, ECCO‐Darwin is less sensitive to sparse and irregularly sampled observations. Thus, ECCO‐Darwin provides a basis for identifying and predicting the consequences of natural and anthropogenic perturbations to the ocean carbon cycle, as well as the climate‐related sensitivity of marine ecosystems. Our study further highlights the importance of physically consistent, property‐conserving reconstructions, as are provided by ECCO, for ocean biogeochemistry studies. Plain Language Summary Data‐driven estimates of how much carbon dioxide the ocean is absorbing (the so‐called “ocean carbon sink”) have improved substantially in recent years. However, computational ocean models that include biogeochemistry continue to play a critical role as they allow us to isolate and understand the individual processes that control ocean carbon sequestration. The ideal scenario is a combination of the above two methods, where data are ingested and then used to improve a model's fit to the observed ocean, also known as, data assimilation. While the physical oceanographic community has made great progress in developing data assimilation systems, for example, the Estimating the Circulation and Climate of the Ocean (ECCO) consortium, the biogeochemical community has generally lagged behind. The ECCO‐Darwin model presented in this paper represents an important technological step forward as it is the first global ocean biogeochemistry model that (1) ingests both physical and biogeochemical observations into the model in a realistic manner and (2) considers how the nature of the ocean carbon sink has changed over multiple decades. As the ECCO ocean circulation estimates become more accurate and lengthen in time, ECCO‐Darwin will become an ever more accurate and useful tool for climate‐related ocean carbon cycle and mitigation studies.
机译:由于稀疏的观察结果和表面海洋PCO2中的时空变异性,量化海洋碳汇的变异仍然存在问题。为了解决这一挑战,我们已经更新和改进了Ecco-Darwin,这是一个全球海洋生物地球化学模型,它吸收了物理和生物地球化学观察。该模型由估计海洋(ecco)财团的循环和气候和由马萨诸塞州理工学院达尔文项目开发的生态系统模型的伴随基于海洋循环估计。除了数据约束的ecco物理学之外,绿色的功能方法用于通过调整初始条件和六种生物地造正方形参数来优化生物态化。在季节性到MultiDecadal Timescales(1995-2017)中,Ecco-Darwin在大多数生物群中具有广泛的表面海洋PCO2和Air-Sea CO2通量重建,特别是在亚热带和赤道地区。二氧化碳摄取之间的最大差异发生在亚副季节性分层生物群体中,莫斯科达尔文导致冬季摄取更强。与全球碳项目OBMS相比,Ecco-Darwin有一个时间平均全球海洋二氧化碳水槽(2.47?±0.50?PG?C?1)和续集变异,与基于插值的产品更加一致。与基于插值的方法相比,Ecco-Darwin对稀疏和不规则采样的观察不太敏感。因此,Ecco-Darwin为鉴定和预测海洋碳循环的自然和人为扰动的后果以及海洋生态系统的气候相关敏感性提供了依据。我们的研究进一步强调了Ecco提供的身体一致,物业保护重建的重要性,因为Ecco提供了海洋生物地球化学研究。简单语言摘要数据驱动的估算海洋吸收的多氧化碳(所谓的“海洋碳汇”)近年来大幅改善。然而,包括生物地球化学的计算海洋模型继续发挥关键作用,因为它们允许我们隔离和理解控制海洋碳封存的个体过程。理想的情况是上述两种方法的组合,其中数据被摄取,然后用于改善模型适合观察到的海洋,也称为数据同化。虽然物理海洋学界在开发数据同化系统方面取得了巨大进展,但例如,估计海洋(ECCO)联盟的流通和气候,生物地球化学界一般落后。本文提出的ecco-darwin模型代表了一个重要的技术步骤,因为它是第一个全球性海洋生物地球化学模型,(1)以现实的方式摄取物理和生物地球化学观察,(2)考虑如何本质海洋碳水槽在多十年内发生了变化。随着ECCO海洋循环估计变得更加准确和延长,Ecco-Darwin将成为与气候相关的海洋碳循环和缓解研究的更准确和有用的工具。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号