...
首页> 外文期刊>Journal of Advances in Modeling Earth Systems >An Orographic‐Drag Parametrization Scheme Including Orographic Anisotropy for All Flow Directions
【24h】

An Orographic‐Drag Parametrization Scheme Including Orographic Anisotropy for All Flow Directions

机译:一种地形阻力参数化方案,包括所有流动方向的地形各向异性

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Orographic drag is an essential process for numerical weather predictions in complex terrain regions, which depends on the inflow direction. In this study, we define the orographic asymmetry vector (OAV) for a coarse grid as the normalized vector between the grid's center point and its center of mass, and the orographic asymmetry in a flow direction—which describes the inclination direction and the extent of the subgrid terrain—is calculated as the projection of OAV on this direction. Calculations of the effective orographic length (OL) and the model grid length λ are extended to all flow directions. A new orographic drag scheme, which considers the effect of orographic anisotropy in all directions, is then developed based on the OAV projection and the extended OL and λ for any given direction. Sensitivity tests of the orographic drag under the new scheme are conducted using a 5 m/s vertically uniform wind along different directions for four coarse grid points in typical mountain regions. The new scheme is shown to provide a more continuous transition of the orographic parameters and the resulting stress as a function of flow direction than piecewise transition of schemes with only eight directions. The predicted momentum flux profile of the new scheme is compared with mountain‐wave simulations obtained from the integrated modeling system IAP‐WRF (Institute of Atmospheric Physics‐Weather Research and Forecasting Model) for the Rocky Mountain. The new scheme is shown to predict an overall narrower stress scatter about the reference simulation than the old scheme. Plain Language Summary The orographic drag exerted by the Earth surface on the atmospheric flow is an essential process for numerical weather predictions and depends on the flow direction. Including the effect of the orographic drag in all directions is important for improving weather forecasts and climate prediction. In this study, we refine the derivation method of the subgrid topographic parameters and develop a new orographic drag scheme considering anisotropy in all directions for weather and climate models. It is shown that the new scheme yields a more continuous transition of the orographic parameters and the resulted drag as a function of flow direction than the transition obtained from the standard scheme with only eight directions, and the new scheme exhibits an overall better performance than this old scheme.
机译:地理阻力是复杂地形区域中数值天气预报的重要过程,这取决于流入方向。在该研究中,我们将用于粗略网格的地形不对称向量(OAV)定义为栅格中心点及其质心之间的归一化向量,流动方向上的形状不对称 - 描述倾斜方向和范围子地图 - 计算为OV在此方向上的投影。有效地形长度(OL)和模型网格长度λ的计算延伸到所有流动方向。然后基于OV投影和延伸的OL和λ对于任何给定的方向,开发了一种新的地理阻力方案,其考虑了所有方向的所有方向的影响。在新方案下的敏感性试验在新方案下使用5米/秒的垂直均匀风在典型的山地区域中的四个粗网点的不同方向进行。该新方案被示出为提供的地相学参数和由此产生的应力作为流动方向的函数提供比具有八个方向的方案的分段转变的函数更加连续转变。将新方案的预测动量通量曲线与从岩石山的IAP-WRF(大气物理天气研究和预测模型)的集成建模系统IAP-WRF(大气法研究所)获得的山波模拟。显示新方案,以预测关于参考仿真的整体较窄应力散射而不是旧方案。普通语言概要地球表面上施加的地球流动施加的地形拖动是数值天气预报的重要过程,并取决于流动方向。包括在所有方向上的地形阻力的影响对于改善天气预报和气候预测是重要的。在这项研究中,我们优化亚片状地形参数的推导方法,并在所有方向上考虑到天气和气候模型的各向异性的新的地形阻力方案。结果表明,新方案产生了比从标准方案获得的流动方向的函数产生了更加连续的地形参数的转换,并且新方案表现出总是比这更好的性能更好旧计划。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号