首页> 外文期刊>Journal of Advances in Modeling Earth Systems >The Influence of Convective Momentum Transport and Vertical Wind Shear on the Evolution of a Cold Air Outbreak
【24h】

The Influence of Convective Momentum Transport and Vertical Wind Shear on the Evolution of a Cold Air Outbreak

机译:对流动量运输和垂直风剪的影响对冷空气爆发的演变

获取原文
获取外文期刊封面目录资料

摘要

To study the influence of convective momentum transport (CMT) on wind, boundary layer and cloud evolution in a marine cold air outbreak (CAO) we use large‐eddy simulations subject to different baroclinicity (wind shear) but similar surface forcing. The simulated domain is large enough, ?km2), to develop typical mesoscale cellular convective structures. We find that a maximum friction induced by momentum transport (MT) locates in the cloud layer for an increase of geostrophic wind with height (forward shear, FW) and near the surface for a decrease of wind with height (backward shear, BW). Although the total MT always acts as a friction, the interaction of friction‐induced cross‐isobaric flow with the Coriolis force can develop supergeostrophic winds near the surface (FW) or in the cloud layer (BW). The contribution of convection to MT is evaluated by decomposing the momentum flux by column water vapor and eddy size, revealing that CMT acts to accelerate subcloud layer winds under FW shear and that mesoscale circulations contribute significantly to MT for this horizontal resolution (250 m), even if small‐scale eddies are nonnegligible and likely more important as resolution increases. Under FW shear, a deeper boundary layer and faster cloud transition are simulated, because MT acts to increase surface fluxes and wind shear enhances turbulent mixing across cloud tops. Our results show that the coupling between winds and convection is crucial for a range of problems, from CAO lifetime and cloud transitions to ocean heat loss and near‐surface wind variability. Plain Language Summary The vertical mixing of wind speed by shallow convection and clouds (called convective momentum transport, CMT) may play an important role in explaining boundary layer winds in midlatitude weather systems. In this study we use high‐resolution simulations to study the influence of CMT on the evolution of winds and clouds in a typical high‐latitude weather system: a cold air outbreak. In a cold air outbreak, strong surface fluxes and strong winds lead to extensive cloud decks that evolve as the system travels over increasingly warmer waters. To exemplify the role of wind mixing on surface winds and clouds we run simulations that are subject to different wind shear: from an increase of wind with height (Forward shear; FW) to a decrease of wind with height (backward shear; BW). We find that wind mixing always acts to slow down winds in the main flow direction, but the height where drag maximizes depends on the direction of shear. Whereas small‐scale turbulence always acts as a drag, the mesoscale circulations and clouds themselves can speed up winds under FW shear. Enhanced turbulent mixing across cloud top and faster surface winds under FW shear also lead the clouds to evolve faster from closed‐deck stratocumulus to broken cumulus fields, which is important for their radiative impact. Our results show that CMT has a significant influence on surface winds and is thus important for understanding air‐sea interaction and near‐surface wind variability, and as such, wind power generation.
机译:为了研究对流动量运输(CMT)对风,边界层和云进化的影响,海洋冷空气爆发(CAO),我们使用探测不同的条巴素(风剪)但类似的表面强制进行大涡模拟。模拟域足够大,是KM2),以开发典型的Mesoscale蜂窝对流结构。我们发现由动量运输(MT)引起的最大摩擦在云层中定位,以增加高度(前向剪切,FW)和表面附近的嗜热风,以减少高度(后向剪切,BW)。虽然总MT总是作为摩擦,但摩擦诱导的交叉缓冲流量与科里奥利力的相互作用可以在表面(FW)附近或云层(BW)附近产生卓越的滴风。通过通过柱水蒸气和涡流分解动量通量来评估对流对MT的贡献,揭示CMT在FW剪切下加速屈曲层风,并且Mescle循环对该水平分辨率(250米)有显着贡献到MT,即使小规模的漩涡是非不可止境的,并且可能更重要,因为决议增加了。在FW剪切下,模拟了更深的边界层和更快的云转换,因为MT起到增加表面磁通量,风剪在云顶部的湍流混合增强。我们的研究结果表明,风和对流之间的耦合对于一系列问题至关重要,从CAO寿命和云过渡到海洋热量损失和近表面风变性。简单的语言概述风速通过浅对流和云(称为对流动量运输,CMT)的垂直混合可能在解释中间天气系统中的边界层风中发挥重要作用。在这项研究中,我们使用高分辨率模拟来研究CMT对典型高纬度天气系统中风和云的演变的影响:冷空气爆发。在寒冷的空气爆发中,强大的表面磁通和强风导致广泛的云甲板,随着系统在越来越温暖的水域传播时发展。为了举例说明风混合在表面风中的作用和云,我们运行受到不同风力剪切的模拟:从高度(向前剪切; FW)的升高增加,高度(向后剪切; BW)减小风。我们发现风混合总是在主流量方向上慢慢向下慢下风,但是拖动最大化的高度取决于剪切方向。虽然小规模湍流总是作为阻力,但Mescle循环和云本身可以加速FW剪切下的风。在FW剪切下增强浊度混合和越来越快的表面风也会引导云从闭合甲板划分到破碎的积云变坏的速度更快地发展,这对于它们的辐射撞击很重要。我们的研究结果表明,CMT对地表风有重大影响,因此对于了解海海相互作用和近地风变性,以及风力发电。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号