...
首页> 外文期刊>Journal of Advances in Modeling Earth Systems >Statistically Steady State Large‐Eddy Simulations Forced by an Idealized GCM: 1. Forcing Framework and Simulation Characteristics
【24h】

Statistically Steady State Large‐Eddy Simulations Forced by an Idealized GCM: 1. Forcing Framework and Simulation Characteristics

机译:通过理想化的GCM强制统计上稳态大型涡流模拟:1。强制框架和仿真特性

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Using large‐eddy simulations (LES) systematically has the potential to inform parameterizations of subgrid‐scale processes in general circulation models (GCMs), such as turbulence, convection, and clouds. Here we show how LES can be run to simulate grid columns of GCMs to generate LES across a cross section of dynamical regimes. The LES setup approximately replicates the thermodynamic and water budgets in GCM grid columns. Resolved horizontal and vertical transports of heat and water and large‐scale pressure gradients from the GCM are prescribed as forcing in the LES. The LES are forced with prescribed surface temperatures, but atmospheric temperature and moisture are free to adjust, reducing the imprinting of GCM fields on the LES. In both the GCM and LES, radiative transfer is treated in a unified but idealized manner (semigray atmosphere without water vapor feedback or cloud radiative effects). We show that the LES in this setup reaches statistically steady states without nudging to thermodynamic GCM profiles. The steady states provide training data for developing GCM parameterizations. The same LES setup also provides a good basis for studying the cloud response to global warming. Plain Language Summary Clouds and their feedbacks remain one of the largest uncertainties in predictions of future climate changes. High‐resolution models can provide faithful simulations of clouds and their underlying turbulence in limited areas, but they have primarily been used in select locations, with limited success in reducing uncertainties in climate predictions. This study presents a framework for driving high‐resolution simulations by a global climate model, which allows us to generate a library of high‐resolution simulations across different cloud regimes. The framework leverages the potential of high‐resolution models to improve parameterizations of clouds and turbulence in climate models and to better understand the cloud feedback mechanisms.
机译:系统地具有大涡模拟(LES)有可能在一般循环模型(GCMS)中的子级规模过程(如湍流,对流和云)通知划分规模过程的参数化。在这里,我们展示了如何运行LES以模拟GCM的网格列以在动态制度的横截面上产生LES。 LES设置近似重复了GCM网格列中的热力学和水预算。从GCM中分离的水平和垂直传输和来自GCM的大规模压力梯度是在LES中迫使的。 LES迫使规定的表面温度,但大气温度和水分可自由调节,减少LES上的GCM场的压印。在GCM和LES中,辐射转移以统一但理想化的方式处理(无水蒸汽反馈或云辐射效应的半植物气氛)。我们表明,此设置中的LES达到统计上稳定状态,而不会扼杀热力学GCM配置文件。稳定状态为开发GCM参数化提供培训数据。相同的LES设置也为研究对全球变暖的云反应提供了良好的基础。普通语言摘要云及其反馈仍然是未来气候变化预测中最大的不确定性之一。高分辨率模型可以在有限地区提供忠实的云和潜在的湍流,但它们主要用于选择地点,在减少气候预测中的不确定性有限。本研究提出了一种通过全球气候模型推动高分辨率模拟的框架,这使我们能够在不同的云制度中生成高分辨率模拟库。该框架利用了高分辨率模型的潜力,以改善气候模型中云和湍流的参数,并更好地理解云反馈机制。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号