...
首页> 外文期刊>Journal of Advances in Modeling Earth Systems >An Efficient Ice Sheet/Earth System Model Spin‐up Procedure for CESM2‐CISM2: Description, Evaluation, and Broader Applicability
【24h】

An Efficient Ice Sheet/Earth System Model Spin‐up Procedure for CESM2‐CISM2: Description, Evaluation, and Broader Applicability

机译:CESM2-CISM2的高效冰盖/地球系统模型旋转程序:描述,评估和更广泛的适用性

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Spinning up a highly complex, coupled Earth system model (ESM) is a time consuming and computationally demanding exercise. For models with interactive ice sheet components, this becomes a major challenge, as ice sheets are sensitive to bidirectional feedback processes and equilibrate over glacial timescales of up to many millennia. This work describes and demonstrates a computationally tractable, iterative procedure for spinning up a contemporary, highly complex ESM that includes an interactive ice sheet component. The procedure alternates between a computationally expensive coupled configuration and a computationally cheaper configuration where the atmospheric component is replaced by a data model. By periodically regenerating atmospheric forcing consistent with the coupled system, the data atmosphere remains adequately constrained to ensure that the broader model state evolves realistically. The applicability of the method is demonstrated by spinning up the preindustrial climate in the Community Earth System Model Version 2 (CESM2), coupled to the Community Ice Sheet Model Version 2 (CISM2) over Greenland. The equilibrium climate state is similar to the control climate from a coupled simulation with a prescribed Greenland ice sheet, indicating that the iterative procedure is consistent with a traditional spin‐up approach without interactive ice sheets. These results suggest that the iterative method presented here provides a faster and computationally cheaper method for spinning up a highly complex ESM, with or without interactive ice sheet components. The method described here has been used to develop the climate/ice sheet initial conditions for transient, ice sheet‐enabled simulations with CESM2‐CISM2 in the Coupled Model Intercomparison Project Phase 6 (CMIP6). Plain Language Summary Experiments with Earth system models typically use the preindustrial (1850 CE) climate as a reference point when examining the climate response to a given experiment scenario. A preindustrial simulated climate state is therefore important to develop and represent consistently, which often requires long and computationally expensive spin‐up or equilibration simulations. The latest generation Earth system models include time‐evolving ice sheet components, which complicate the task of generating a self‐consistent simulated preindustrial climate. Additional complexity arises because ice sheets interact with the rest of the climate system through complex processes and feedbacks and respond slowly to climate change over many millennia. This equilibration timescale is computationally intractable using traditional spin‐up/equilibration simulation techniques. To circumvent this challenge, we present a novel method for generating an internally consistent climate state that is suitable for models with interactive ice sheet components. This method uses fewer computational resources than traditional simulation methods, while generating a climate consistent with more expensive methods. We demonstrate the viability of the method by generating the preindustrial control climate in the Community Earth System Model Version 2 (CESM2), which includes an interactive Greenland ice sheet.
机译:旋转高度复杂的耦合地球系统模型(ESM)是一种耗时和计算苛刻的运动。对于具有交互式冰板组件的模型,这成为一个重大挑战,因为冰盖对双向反馈过程敏感,并通过高达多千年的冰川时间尺度平衡。该工作描述并演示了一种用于旋转包括交互式冰板组件的现代,高度复杂的ESM的计算易迭代的过程。该过程在计算昂贵的耦合配置和计算上的计算上交替,其中大气组分被数据模型所取代。通过周期性地再生与耦合系统一致的大气强制,数据大气仍然充分限制,以确保更广泛的模型状态现实地发展。通过在社区地球系统模型版本2(CESM2)中旋转预生产气候,耦合到格陵兰岛的社区冰板模型版本2(Cism2),证明了该方法的适用性。平衡气候状态类似于来自具有规定的格陵兰冰盖的耦合模拟的控制气候,表明迭代程序与没有交互式冰盖的传统旋转方法一致。这些结果表明,这里呈现的迭代方法提供了一种更快和计算的更便宜的方法,用于旋转高度复杂的ESM,有或没有交互式冰板组件。此处描述的方法已被用于开发瞬态冰片的初始条件,以CESM2-CISM2在耦合型号离心项目6(CMIP6)中的CESM2-CISM2。当检查给定实验场景的气候响应时,普通地形系统模型的实验通常使用预工业(1850 CE)气候作为参考点。因此,预工业模拟气候状态对于开发和代表始终需要长期和计算昂贵的旋转或平衡模拟。最新一代的地球系统型号包括时间不断发展的冰盖组件,其使自我一致的模拟预工业气候的任务复杂化。出现额外的复杂性,因为冰盖通过复杂的过程和反馈和反馈与地区的其余部分相互作用,并在许多千年内缓慢响应气候变化。这种平衡时间尺度使用传统的旋转/平衡仿真技术进行了计算地难以解决。为了规避这一挑战,我们提出了一种新的方法,用于产生内部一致的气候状态,适用于具有交互式冰板组件的模型。该方法比传统的仿真方法使用更少的计算资源,同时产生与更昂贵的方法一致的气候。我们通过在社区地球系统模型版本2(CESM2)中产生预生产控制气候来证明该方法的可行性,包括互动的格陵兰冰盖。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号