...
首页> 外文期刊>Journal of Advances in Modeling Earth Systems >A Generalized Mixing Length Closure for Eddy‐Diffusivity Mass‐Flux Schemes of Turbulence and Convection
【24h】

A Generalized Mixing Length Closure for Eddy‐Diffusivity Mass‐Flux Schemes of Turbulence and Convection

机译:用于湍流和对流的涡流散射质量磁通方案的广义混合长度闭合

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Because of their limited spatial resolution, numerical weather prediction and climate models have to rely on parameterizations to represent atmospheric turbulence and convection. Historically, largely independent approaches have been used to represent boundary layer turbulence and convection, neglecting important interactions at the subgrid scale. Here we build on an eddy‐diffusivity mass‐flux (EDMF) scheme that represents all subgrid‐scale mixing in a unified manner, partitioning subgrid‐scale fluctuations into contributions from local diffusive mixing and coherent advective structures and allowing them to interact within a single framework. The EDMF scheme requires closures for the interaction between the turbulent environment and the plumes and for local mixing. A second‐order equation for turbulence kinetic energy (TKE) provides one ingredient for the diffusive local mixing closure, leaving a mixing length to be parameterized. Here, we propose a new mixing length formulation, based on constraints derived from the TKE balance. It expresses local mixing in terms of the same physical processes in all regimes of boundary layer flow. The formulation is tested at a range of resolutions and across a wide range of boundary layer regimes, including a stably stratified boundary layer, a stratocumulus‐topped marine boundary layer, and dry convection. Comparison with large eddy simulations (LES) shows that the EDMF scheme with this diffusive mixing parameterization accurately captures the structure of the boundary layer and clouds in all cases considered. Plain Language Summary Turbulence and convection transport heat and moisture in the atmosphere and are ultimately responsible for the formation of clouds. However, they act on scales far too small to be resolved in current global atmosphere models. Instead, parameterizations have to be used to approximate their average effect on the finite volumes that are resolved in a global model. These parameterizations are often tailored to specific atmospheric conditions and fail when those conditions are not met. Here we propose a parameterization that aims to reproduce the average effect of turbulent heat and moisture transport under all atmospheric conditions. Numerical simulations demonstrate the accuracy of the parameterization in simulating turbulence in atmospheric boundary layers under stable and convective conditions, including the simulation of stratocumulus clouds.
机译:由于它们有限的空间分辨率,数值天气预报和气候模型必须依赖参数化来表示大气湍流和对流。历史上,主要是独立的方法已经用于表示边界层湍流和对流,忽略了基底级的重要相互作用。在这里,我们建立在eDDy-扩散性质量通量(EDMF)方案上,以统一的方式代表所有子级级混合,将亚耕地级波动分配成来自局部扩散混合和相干方向性结构的贡献,并允许它们在单个内部相互作用框架。 EDMF方案需要闭合湍流环境与羽毛之间的相互作用以及局部混合。湍流动能(TKE)的二阶方程提供了扩散局部混合封闭的一种成分,留下待参数化的混合长度。这里,我们提出了一种新的混合长度配方,基于来自TKE平衡的约束。它表达了在边界层流动制度中相同的物理过程的局部混合。该配方在一定的分辨率和各种边界层制度上测试,包括稳定分层的边界层,划分的划分的海洋边界层和干扰。与大型涡流模拟(LES)的比较表明,具有这种扩散混合参数化的EDMF方案精确地捕获了所有案例中的边界层和云的结构。普通语言汇总湍流和对流传输热量和水分在大气中,最终负责形成云。但是,它们对缩小的规模太小而无法在当前的全球大气模型中得到解决。相反,参数化必须用于近似于它们对全局模型中解决的有限卷的平均影响。这些参数化通常针对特定的大气条件量身定制,并在不符合这些条件时失败。在这里,我们提出了一种参数化,旨在在所有大气条件下再现湍流热量和水分运输的平均效果。数值模拟证明了在稳定和对流条件下大气边界层中的模拟湍流中的参数化的准确性,包括模拟结构云的模拟。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号