...
首页> 外文期刊>Journal of Advances in Modeling Earth Systems >An Energy Consistent Discretization of the Nonhydrostatic Equations in Primitive Variables
【24h】

An Energy Consistent Discretization of the Nonhydrostatic Equations in Primitive Variables

机译:原始变量中的非水压方程的能量一致的离散化

获取原文
   

获取外文期刊封面封底 >>

       

摘要

We derive a formulation of the nonhydrostatic equations in spherical geometry with a Lorenz staggered vertical discretization. The combination conserves a discrete energy in exact time integration when coupled with a mimetic horizontal discretization. The formulation is a version of Dubos and Tort (2014, https://doi.org/10.1175/MWR-D-14-00069.1) rewritten in terms of primitive variables. It is valid for terrain following mass or height coordinates and for both Eulerian or vertically Lagrangian discretizations. The discretization relies on an extension to Simmons and Burridge (1981, https://doi.org/10.1175/1520-0493(1981)1090758:AEAAMC2.0.CO;2) vertical differencing, which we show obeys a discrete derivative product rule. This product rule allows us to simplify the treatment of the vertical transport terms. Energy conservation is obtained via a term‐by‐term balance in the kinetic, internal, and potential energy budgets, ensuring an energy‐consistent discretization up to time truncation error with no spurious sources of energy. We demonstrate convergence with respect to time truncation error in a spectral element code with a horizontal explicit vertically implicit implicit‐explicit time stepping algorithm. Plain Language Summary Energy consistent discretizations have proven useful in guiding the development of numerical methods for simulating fluid dynamics. They ensure that the discrete method does not have any spurious sources of energy, which can lead to unstable and unrealistic simulations. Here we provide an energy consistent discretization of the equations used by global models of the Earth's atmosphere. The discretization is written in terms of standard variables in spherical coordinates and supports a wide variety of terrain following vertical coordinates. It can be used with any horizontal discretization that has a discrete version of the integration‐by‐parts identity.
机译:我们在球面几何形状中获得了非水压方程,具有Lorenz交错垂直离散化。当与模拟水平离散化耦合时,该组合在确切的时间集成中节省了离散能量。该配方是迪拜和侵权行为的版本(2014,HTTPS://Doi.org/10.1175/Mwr-d-14-00069.1)在原始变量方面重写。它适用于地形或高度坐标以及欧拉或垂直拉格朗日的离散化。离散化依赖于Simmons和Burridge的扩展(1981,https://doi.org/10.1175/1520-0493(1981),11520-0493(1981)09,120-0493(1981); 0758:aeaamcs2.0.c ;;2我们展示了一个离散的obeys衍生产品规则。本产品规则允许我们简化垂直传输术语的处理。通过在动力学,内部和潜在能源预算中通过逐个逐步的平衡获得节能,确保能量一致的离散化达到时间截断误差,没有虚假的能量来源。我们展示了关于频谱元件代码中的时间截断误差的收敛,其具有水平显式垂直隐式隐式隐式的隐式时间步进算法。简单语言摘要能量一致的离散化已经证明有助于引导用于模拟流体动力学的数值方法的开发。它们确保离散方法没有任何虚假的能量来源,这可能导致不稳定和不切实际的模拟。在这里,我们提供了地球大气层的全球模型使用的方程的能量一致。在球面坐标中的标准变量方面编写了离散化,并支持垂直坐标后各种地形。它可以与任何水平离散化一起使用,该水平离散化具有逐个零件成分的离散版本。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号