...
首页> 外文期刊>Journal of Advances in Modeling Earth Systems >A Novel Framework to Study Trace Gas Transport in Deep Convective Clouds
【24h】

A Novel Framework to Study Trace Gas Transport in Deep Convective Clouds

机译:一种研究深入对流云痕量气体运输的新框架

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Deep convective clouds reach the upper troposphere (8–15 km height). In addition to moisture and aerosol particles, they can bring aerosol precursor gases and other reactive trace gases from the planetary boundary layer to the cloud top. In this paper, we present a method to estimate trace gas transport based on the analysis of individual air parcel trajectories. Large eddy simulation of an idealized deep convective cloud was used to provide realistic environmental input to a parcel model. For a buoyant parcel, we found that the trace gas transport approximately follows one out of three scenarios, determined by a combination of the equilibrium vapor pressure (containing information about water‐solubility and pure component saturation vapor pressure) and the enthalpy of vaporization. In one extreme, the trace gas will eventually be completely removed by precipitation. In the other extreme, there is almost no vapor condensation on hydrometeors and most of the gas is transported to the top of the cloud. The scenario in between these two extremes is also characterized by strong gas condensation, but a small fraction of the trace gas may still be transported aloft. This approach confirms previously suggested patterns of inert trace gas behavior in deep convective clouds, agrees with observational data, and allows estimating transport in analytically simple and computationally efficient way compared to explicit cloud‐resolving model calculations. Plain Language Summary Gas transport by deep convective clouds can impact many atmospheric processes including new particle formation, which increases the amount of aerosols in the upper troposphere (8–15 km altitude). In this paper, we suggest a method for calculating the amount of trace gas that can survive transport inside a deep convective cloud. The model is applied to an idealized cloud event, and the results show that among other parameters, transport strongly depends on the physical properties of the gas. The model framework allows us to identify boundaries of the main gas properties defining two extreme scenarios for the gas: full removal by precipitation or complete transport of the gas aloft.
机译:深度对流云到达上层覆盖率(高度8-15公里)。除了水分和气溶胶颗粒外,它们还可以将气溶胶前体气体和其他反应性痕量气体从行星边界层带到云层。在本文中,我们提出了一种基于单个空气包轨迹的分析来估算痕量气体传输的方法。用于理想化的深度对流云的大涡模拟用于为包裹模型提供现实的环境输入。对于浮斗包裹,我们发现痕量气体传输大致遵循三种情况中的三种情况,由平衡蒸气压(含有有关水溶性和纯组分饱和蒸气压的信息)和蒸发焓确定。在一个极端,痕量气体最终将通过降水完全除去。在另一个极端,水分计上几乎没有蒸汽凝结,大部分气体被运输到云的顶部。这两个极端之间的场景还具有强大的气体冷凝,但痕量气体可能仍然可以高空运输。这种方法确认了深度对流云中的先前建议的惰性跟踪气体行为模式,与观测数据一致,并允许与显式云解析模型计算相比,以分析简单和计算有效的方式估算运输。简单语言摘要气体传输深入对流云会影响许多大气过程,包括新的颗粒形成,这增加了上层上层(8-15公里海拔8-15公里)的气溶胶量。在本文中,我们建议一种计算可以在深入对流云内存运输的痕量气体量的方法。该模型应用于理想化的云事件,结果表明,在其他参数中,运输强烈取决于气体的物理性质。模型框架使我们能够识别定义气体两个极端情景的主要气体特性的边界:通过升降或储气的沉淀或完全运输来完全去除。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号