首页> 外文期刊>Journal for ImmunoTherapy of Cancer >17?Activity sensors for noninvasive monitoring of immune response and tumor resistance during immune checkpoint blockade therapy
【24h】

17?Activity sensors for noninvasive monitoring of immune response and tumor resistance during immune checkpoint blockade therapy

机译:17?免疫应答性免疫应答的非侵袭监测活性传感器免疫检查点梗死治疗

获取原文
获取外文期刊封面目录资料

摘要

Background Despite the curative potential of immune checkpoint blockade (ICB) therapy, only small subsets of patients achieve tumor regression while many responders relapse and acquire resistance. Monitoring treatment response and detecting the onset of resistance are critical for improving patient prognoses. Here we engineered ICB antibody-sensor conjugates known as ICB-Dx by coupling peptides sensing the activity of granzyme B (GzmB), a T cell cytotoxic protease, directly on αPD1 antibody to monitor therapeutic responses by producing a fluorescent reporter into urine. To develop biomarkers that indicate mechanisms of resistance to ICB, we generated B2m-/- and Jak1-/- tumor models and performed transcriptomic analyses to identify unique protease signatures of these resistance mechanisms. We then built a multiplexed library of αPD1-Dx capable of detecting early therapeutic response and illuminating resistance mechanisms during ICB therapy. Methods FITC-labeled GzmB substrates were synthesized (CEM) and conjugated to αPD1 antibody. B2m-/- and Jak1-/- tumors were generated from WT MC38 cells using CRISPR/Cas9. For tumor studies, 10 6 cells were inoculated s.c. in B6 mice. Tumor mice were treated with αPD1 or IgG1 isotype conjugates (0.1 mg), and urine was collected at 3 hours. Tumor RNA was isolated with RNEasy kit (Qiagen) and prepared for sequencing with TruSeq mRNA kit (Illumina). Results To synthesize αPD1-Dx, we coupled FITC-labeled GzmB substrates to αPD1 antibody (figure 1a). In MC38 tumors, systemic administration of αPD1-Dx lowered tumor burden relative to control treatment while producing significantly elevated urine signals that preceded tumor regression (figure 1b, c). To investigate the ability to monitor tumor resistance to ICB, we developed knockout tumors to model B2m and Jak1 mutations, which are observed in human patients. in vivo, B2m-/- and Jak1-/- MC38 tumors were resistant to αPD1 monotherapy (figure 1d). Tumor RNA sequencing revealed that gene expression was altered during αPD1 treatment only in WT tumors. Importantly, B2m-/- tumors showed very different expression profiles than Jak1-/- tumors during αPD1 treatment, indicative of unique regulation of resistance (figure 1e). We used differential expression analyses to discover unique protease signatures associated with these two resistance mechanisms. Finally, a multiplexed library of αPD1-Dx engineered to monitor both tumor and immune proteases detected early on-treatment responses and stratified B2m-/- from Jak1-/- resistance with high diagnostic validity (figure 1f). Abstract 17 Figure 1 Monitoring response and resistance with ICB-Dx(a) αPD1-Dx can reinvigorate T cell response and monitor protease activities in the tumor microenvironment. (b) Growth curves of WT MC38 tumors treated with αPD1- or IgG1-Dx (ANOVA). (c) Urine signals detect treatment response to αPD1 monotherapy (ANOVA). (d) Growth curves of B2m-/- and Jak1-/- tumors treated with αPD1- or IgG1-Dx (ANOVA). (e) TSNE plot showing RNA profiles of WT, B2m-/-, Jak1-/- tumors treated with αPD1 or isotype control. (f) ROC curves of random forest classifiers built from urine signals that differentiate on-treatment response from on-treatment resistance and B2m-/- from Jak1-/- resistance. Conclusions We have engineered activity sensors that accurately detect therapeutic responses and stratify resistance mechanisms noninvasively from urine, thereby potentially expanding the precision of ICB therapy to benefit cancer patients.
机译:背景技术尽管免疫检查点封闭(ICB)治疗,但只有患者的小亚群达到肿瘤回归,而许多响应者复发并获得抵抗。监测治疗响应和检测抗性发作对于改善患者预测至关重要。在这里,我们通过偶联肽在αpd1抗体上直接偶联蛋白酶B(gzmb),T细胞细胞毒性蛋白酶的活性,通过将荧光报告称为尿液来监测治疗反应,通过偶联肽感测为ICB-DX称为ICB-DX的ICB-DX。为了开发指示对ICB抗性机制的生物标志物,我们产生了B2M - / - 和JAK1 / - 肿瘤模型,并进行了转录组分析以确定这些阻力机制的独特蛋白酶特征。然后,我们建立了一种αpd1-dx的多路复用库,能够检测ICB治疗期间的早期治疗响应和照明电阻机制。方法合成FITC标记的GZMB底物(CEM)并与αPD1抗体缀合。使用CRISPR / CAS9从WT MC38细胞产生B2M - / - 和Jak1 / - 肿瘤。对于肿瘤研究,接种了10种6个细胞的S.C.在B6小鼠中。用αpd1或IgG1同种型缀合物(0.1mg)处理肿瘤小鼠,并在3小时内收集尿液。用RNEasy试剂盒(QIAGEN)分离肿瘤RNA,并制备用Truseq mRNA试剂盒(Illumina)测序。结果合成αpd1-dx,我们将Fitc标记的gzmb底物耦合到αpd1抗体(图1a)。在MC38肿瘤中,αPD1-DX的全身施用相对于对照处理,肿瘤负荷降低,同时产生肿瘤回归的显着升高的尿液信号(图1B,C)。为了探讨监测对ICB的肿瘤抗性的能力,我们向人类患者观察到的B2M和JAK1突变的敲除肿瘤产生敲除肿瘤。体内,B2M - / - 和JAK1 - / - MC38肿瘤对αPD1单疗法耐药性(图1D)。肿瘤RNA测序显示,在WT肿瘤中仅在αpd1处理期间改变基因表达。重要的是,B2M - / - 肿瘤显示出比αPD1处理期间的JAK1 - / - 肿瘤表示非常不同的表达谱,表明抗性独特调节(图1E)。我们使用差异表达分析来发现与这两个电阻机制相关的独特蛋白酶签名。最后,αpd1-dx的多路复用文库,用于监测肿瘤和免疫蛋白酶的早期治疗反应和分层b2m - / - 来自jak1 - /抗性,具有高诊断有效性(图1f)。摘要17图1监测响应和ICB-DX(a)αpd1-dx的抗性可以重新测量肿瘤微环境中的T细胞响应和监测蛋白酶活性。 (b)用αpd1-或IgG1-DX(Anova)处理的WT MC38肿瘤的生长曲线。 (c)尿检检测αpd1单药治疗(ANOVA)的治疗响应。 (d)B2M - / - 和JAK1 - / - 用αpd1-或IgG1-DX(Anova)处理的jak1 / - 肿瘤的生长曲线。 (e)Tsne图显示用αpd1或同种型对照治疗的wt,b2m - / - ,jak1 / - 肿瘤的RNA型材。 (f)从尿液信号构建的随机森林分类器的ROC曲线,这些尿点从治疗抗性和B2M - / - 来自Jak1 /抗性的接受处理响应。结论我们具有精确地检测治疗性反应和从尿液中无血液抗性机制的工程化活性传感器,从而潜在地扩展了ICB疗法的精度,使癌症患者受益。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号