...
首页> 外文期刊>Journal for ImmunoTherapy of Cancer >226?Checkpoint blockade hastens a switch from an NKT dominant, TNF-alpha-driven to a CD4 /CD8 IFN-gamma-driven immune response within MC-38 tumor-infiltrating lymphocytes
【24h】

226?Checkpoint blockade hastens a switch from an NKT dominant, TNF-alpha-driven to a CD4 /CD8 IFN-gamma-driven immune response within MC-38 tumor-infiltrating lymphocytes

机译:226?检查点封闭地暂停从NKT显性,TNF-α-DER驱动到CD4 / CD8 IFN-Gamma驱动的免疫应答,在MC-38肿瘤浸润淋巴细胞内的CD4 / CD8 IFN-Gamma驱动的影响

获取原文
           

摘要

Background It is incompletely understood which populations of tumor-infiltrating lymphocytes (TIL) respond to checkpoint blockade (CB) and when. Recent studies in murine MC-38 colon carcinoma demonstrate CD4 T cells are among the most prominent responders, 1 but these studies were undertaken late in tumor growth, weeks after CB blockade was initiated. Here, we profile how the landscape of CB-responding TIL change between early and late MC-38 tumor growth, and uncover a novel switch that occurs between natural killer T (NKT) and conventional CD4/CD8 T cell responses. Methods We treated C57BL/6 mice bearing subcutaneous MC-38 tumors with anti-PD-1 and/or anti-CTLA-4 antibodies, and analyzed TIL 11 or 21 days later using a 23-paramter flow cytometry panel that includes three markers of effector function: TNF-alpha, IFN-gamma, and CD107a. We then investigated major populations, including NKT TIL, in ex vivo cytotoxicity assays and in vivo tumor growth studies using CD1d overexpressin MC-38 cells. Results Our analysis identified 37 TIL populations in MC-38 tumors, representing CD4 or CD8 T cells, natural killer (NK), and NKT cells. The distribution and effector function among TIL shift dramatically between early and late MC-38 growth. At 11 days, the immune response is dominated by TNF-alpha-producing NKT, which represent 53.5 ± 3.7% of all TIL. These are accompanied by modest frequencies of CD4 and CD8 TIL, producing low levels of IFN-gamma. After 21 days, NKT populations are reduced to 15.2 ± 1.5%, giving way to increased NK, CD4 , and CD8 TIL, with increased IFN-gamma production. CB hastens this switch, markedly reducing NKT to less than 20% of all TIL, downregulating TNF-alpha production across NKT and CD4 T cell subpopulations, increasing CD4 and CD8 TIL frequencies, and significantly up-regulating IFN-gamma production at 11 days. CD107a expression patterns suggest degranulation is most associated with NK and NKT TIL (figure 1). NKT displayed no CD1d-restricted cytotoxicity against MC-38 ex vivo. However, CD1d overexpression on MC-38 significantly delayed tumor growth in vivo, suggesting early NKT activity may indirectly suppress tumor progression, but by what precise mechanism(s) is currently unknown. Abstract 226 Figure 1 t-SNE analysis of effector TIL populations identifies distinct, IFN-gamma and TNF-alpha-producing cells at early (day 11) and late (day 21) time points of subcutaneous MC38 growth. (a) Combined pseudocolored density plot of t-SNE parameters of viable, non-aggregated, CD45.2 , CD3 and/or NK1.1 cells from all time points and treatment conditions. (b) MFI values of clustering parameters from identified TIL populations were used in a hierarchical clustering analysis. Major clustering groups were then broadly identified as: TC, cytotoxic T cells; TH, helper T cells; gamma delta-like, gamma delta T cells or T cells clustering with gamma delta T cells; NK, natural killer cells; or O, other TIL. (c) Expression of effector molecules CD107a (top), IFN-gamma (middle), and TNF-alpha (bottom) among each identified TIL population. The extent of background signal for each effector molecule is denoted by a red-dashed FMO line. (d) A heat map of effector molecule MFIs overlaid onto the t-SNE analysis. (e) Analyses of TNF-alpha expression for P5 day 11. Included is the population location (upper left), TNF-alpha expression versus side-scatter (upper right), P5 frequency with check point blockade (lower left), and TNF-alpha MFI with check point blockade (lower right) (f) Analyses of IFN-gamma expression for P32 day 11. Included is the population location (upper left), IFN-gamma expression versus side-scatter (upper right), P32 frequency with check point blockade (lower left), and percent IFN-gamma with check point blockade (lower right). Conclusions Despite evidence of an indirect benefit of early NKT activity, CB hastens a switch from TNF-alpha-driven NKT involvement toward a IFN-gamma-driven CD4 and CD8 T cell response in subcutaneous MC-38 tumors. These results corroborate earlier findings that CD4 TIL are a major CB-responding population, and introduce a NKT/T cell switch that may be a key feature of the CB response in certain tumors. Ethics Approval Animal experiments in this study were performed according to protocols approved by the University of South Florida’s institutional animal care and use committee (IACUC) committee, number R IS00005710. Reference Wei S, Levine J, Coghill A, Zhao Y, Anang N, Andrews M, Sharma P, Wang J, Wargo J, Pe’er D, Allison J. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 2017 Sep 7; 170(6): 1120–1133.e17.
机译:背景技术不完全理解,肿瘤浸润淋巴细胞(TIL)的群体响应检查点封闭(CB)和何时。鼠MC-38结肠癌的最新研究表明CD4 T细胞是最突出的响应者,但这些研究在肿瘤生长后期进行了晚期,开始CB阻滞后。在这里,我们简介如何在早期和晚期MC-38肿瘤生长之间改变CB响应直到变化的景观,并揭示了自然杀伤T(NKT)和常规CD4 / CD8 T细胞反应之间发生的新型开关。方法采用抗PD-1和/或抗CTLA-4抗体携带皮下MC-38肿瘤的C57BL / 6小鼠治疗C57BL / 6小鼠,并使用包括三个标记的23分接型流式细胞术面板分析TIL 11或21天效应器功能:TNF-alpha,IFN-Gamma和CD107a。然后,我们调查了在exvivo细胞毒性测定中的主要种群,包括NKT TIL,并使用CD1D过表达MC-38细胞体内肿瘤生长研究。结果我们的分析确定了MC-38肿瘤中的37个TIL群体,代表CD4或CD8 T细胞,天然杀伤(NK)和NKT细胞。在早期和晚期MC-38生长之间大幅移动的分布和效应功能。在11天时,免疫应答由TNF-α产生的NKT主导,其占所有直到的53.5±3.7%。这些伴随着CD4和CD8 TIL的适度频率,产生低水平的IFN-γ。 21天后,NKT种群减少到15.2±1.5%,使NK,CD4和CD8直到增加,具有较高的IFN-Gamma生产。 CB迅速启动该开关,将NKT降低至少于所有直到20%,下调NKT和CD4 T细胞群的TNF-α产生,增加CD4和CD8为TIL频率,并在11天内显着上调IFN-Gamma生产。 CD107a表达模式表明脱粒与NK和NKT TIL最相关(图1)。 NKT针对MC-38离体显示没有CD1D限制细胞毒性。然而,在MC-38上的CD1D过表达在体内显着延迟肿瘤生长,表明早期的NKT活性可以间接抑制肿瘤进展,而是通过当前未知的精确机制。摘要226图1效应器的T-SNE分析群体在皮下(11天)和皮下MC38生长的晚期(第21天)时间点的初始化,IFN-Gamma和TNF-α-生成细胞。 (a)来自所有时间点和治疗条件的可行性,非聚集,CD45.2,CD3和/或NK1.1细胞的T-SNE参数的伪焦化密度曲线。 (b)在分层聚类分析中使用了来自识别的TIL群体的聚类参数的MFI值。然后大致鉴定主要聚类基团:TC,细胞毒性T细胞; th,辅助t细胞; γδ类似,γδt细胞或与γδt细胞聚类的T细胞; NK,天然杀伤细胞;或o,其他直到。 (c)效应分子的表达CD107a(顶部),IFN-γ(中间)和TNF-α(底部)在每个鉴定的直到群体中。每个效应分子的背景信号的程度由红划线的FMO线表示。 (d)效应分子MFIS的热图覆盖在T-SNE分析上。 (e)P5天11的TNF-α表达分析。包括群体位置(左上角),TNF-alpha表达与侧散(右上角),P5频率与检查点块(左下角)和TNF - 具有检查点封闭(右下)(f)分析IFN-Gamma表达式的P32天11.包括群体位置(左上角),IFN-Gamma表达与侧散侧(右上),P32频率使用检查点封锁(左下角),以及带有检查点封锁(右下角)的IFN-GAMMA百分比。结论尽管证据表明早期NKT活性的间接效益,CB从TNF-α驱动的NKT致致在皮下MC-38肿瘤中涉及来自TNF-α驱动的NKT的开关。这些结果证实了CD4 TIL的早期发现是主要的CB响应群体,并引入NKT / T细胞开关,其可以是某些肿瘤中CB响应的关键特征。该研究中的伦理批准动物实验是根据南佛罗里达大学的机构动物护理和使用委员会(IACUC)委员会批准的议定书进行的,编号R IS00005710。参考Wei S,Levine J,Coghill A,Zhao Y,Anang N,Andrews M,Sharma P,Wang J,Wargo J,Pe'er D,Allison J.独特的细胞机制利于抗CTLA-4和抗PD- 1检查点封锁。 2017年9月7日; 170(6):1120-1133.E17。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号