首页> 外文期刊>Hydrology and Earth System Sciences Discussions >Crossing hydrological and geochemical modeling to understand the spatiotemporal variability of water chemistry in a headwater catchment (Strengbach, France)
【24h】

Crossing hydrological and geochemical modeling to understand the spatiotemporal variability of water chemistry in a headwater catchment (Strengbach, France)

机译:跨越水文和地球化学建模,了解落地集水区水化学的时空变异(Strengbach,France)

获取原文
           

摘要

Understanding the variability of the chemical composition of surface waters is a major issue for the scientific community. To date, the study of concentration–discharge relations has been intensively used to assess the spatiotemporal variability of the water chemistry at watershed scales. However, the lack of independent estimations of the water transit times within catchments limits the ability to model and predict the water chemistry with only geochemical approaches. In this study, a dimensionally reduced hydrological model coupling surface flow with subsurface flow (i.e., the Normally Integrated Hydrological Model, NIHM) has been used to constrain the distribution of the flow lines in a headwater catchment (Strengbach watershed, France). Then, hydrogeochemical simulations with the code KIRMAT (i.e., KInectic Reaction and MAss Transport) are performed to calculate the evolution of the water chemistry along the flow lines. Concentrations of dissolved silica (H4SiO4) and in basic cations (Na+, K+, Mg2+, and Ca2+) in the spring and piezometer waters are correctly reproduced with a simple integration along the flow lines. The seasonal variability of hydraulic conductivities along the slopes is a key process to understand the dynamics of flow lines and the changes of water transit times in the watershed. The covariation between flow velocities and active lengths of flow lines under changing hydrological conditions reduces the variability of water transit times and explains why transit times span much narrower variation ranges than the water discharges in the Strengbach catchment. These findings demonstrate that the general chemostatic behavior of the water chemistry is a direct consequence of the strong hydrological control of the water transit times within the catchment. Our results also show that a better knowledge of the relations between concentration and mean transit time (C–MTT relations) is an interesting new step to understand the diversity of C–Q shapes for chemical elements. The good match between the measured and modeled concentrations while respecting the water–rock interaction times provided by the hydrological simulations also shows that it is possible to capture the chemical composition of waters using simply determined reactive surfaces and experimental kinetic constants. The results of our simulations also strengthen the idea that the low surfaces calculated from the geometrical shapes of primary minerals are a good estimate of the reactive surfaces within the environment.
机译:了解地表水化学成分的可变性是科学界的主要问题。迄今为止,集中排放关系的研究已经集中地用于评估流域鳞片水化学的时空变化。然而,缺乏对集水区内的水运输时间的独立估计限制了模拟和预测只有地球化学方法的水化学的能力。在该研究中,使用地下流动(即通常综合的水文模型,NIHM)的尺寸减少的水文模型耦合表面流动已被用于约束流线中的流动线(Strentbach流域,法国)的分布。然后,进行与代码Kirmat(即Kinectic反应和质量传递)的水文化学模拟以计算沿流动线的水化学的演变。用沿流动线的简单集成正确地再现溶解二氧化硅(H4SIO4)和碱阳离子(Na +,K +,Mg2 +,Ca2 +的基本阳离子(Na +,K +,Mg2 +,Ca2 +)。沿着斜坡液压导电性的季节变化是了解流动线动力学的关键过程和流域中的水运输时间的变化。在改变水文条件下,流速和流量线的流量长度之间的共变量降低了水运输时间的变化,并解释了为什么跨越时间跨度比Strengbach集水区内的排水更窄的变化范围。这些发现表明,水化学的一般化疗行为是对集水区内的水分流时间的强水文控制的直接后果。我们的研究结果还表明,更好地了解集中和平衡时间(C-MTT关系)的关系是一个有趣的新步骤,了解化学元素的C-Q形状的多样性。测量和建模浓度之间的良好匹配,同时尊重水文模拟提供的水岩相互作用时间也表明,可以使用简单确定的反应表面和实验动力学常数捕获水的化学成分。我们的模拟结果还强化了从初级矿物的几何形状计算的低表面是环境内的反应表面的良好估计。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号