...
首页> 外文期刊>Hydrology and Earth System Sciences Discussions >Using 14C and 3H to understand groundwater flow and recharge in an aquifer window
【24h】

Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

机译:使用14C和3H了解地下水流量并在含水层窗口中充电

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Knowledge of groundwater residence times and recharge locations is vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge from rainfall and recharge from the Gellibrand River. To determine recharge patterns and groundwater flow paths, environmental isotopes (3H, 14C, δ13C, δ18O, 2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. The water table fluctuates by 0.9 to 3.7 m annually, implying recharge rates of 90 and 372 mm yr?1. However, residence times of shallow (11 to 29 m) groundwater determined by 14C are between 100 and 10 000 years, 3H activities are negligible in most of the groundwater, and groundwater electrical conductivity remains constant over the period of study. Deeper groundwater with older 14C ages has lower δ18O values than younger, shallower groundwater, which is consistent with it being derived from greater altitudes. The combined geochemistry data indicate that local recharge from precipitation within the valley occurs through the aquifer window, however much of the groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High. The Gellibrand Valley is a regional discharge zone with upward head gradients that limits local recharge to the upper 10 m of the aquifer. Additionally, the groundwater head gradients adjacent to the Gellibrand River are generally upwards, implying that it does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10 000 years BP to the present day are interpreted to indicate an increase in recharge rates on the Barongarook High.
机译:对地下水住院时间和充电地点的知识对地下水资源的可持续管理至关重要。在这里,我们调查地下水住院时间和山东东南部山谷的充电模式,在东南部的含水层沉积物中,可以形成一个“含水层”,这些“含水层”可能会从降雨中获得弥漫性补给并从Gellibrand River拨出。为了确定再充电图案和地下水流动路径,环保同位素(3H,14C,Δ13C,Δ18O,2H)与地下水地球化学结合使用,并连续监测地下水升降和导电性。水表每年波动0.9至3.7米,暗示充电率为90和372mm YR?1。然而,在14℃确定的浅(11至29μm)地下水的停留时间在100到10 000年之间,大部分地下水中的3H活动可忽略不计,并且在研究期间,地下水导电率仍然不变。具有较旧的14C年龄的深层地下水比较较小的δ18O值较小,较浅的地下水,这与其源于更大的高度。组合的地球化学数据表明,山谷内降水的局部充电通过含水层窗口发生,然而,格里赫兰谷的大部分地下水主要来自区域充电区,Barongarook高。 Gellibrand Valley是一个区域放电区,具有向上的头部梯度,限制局部充电到含水层的占10米。另外,与Gellibrand河流相邻的地下水头梯度通常是向上的,这意味着它不会为周围地下水充电并具有有限的银行存储。 14C年龄和Cl浓度是良好的相关性,Cl浓度可用于提供地下水停留时间的一阶估计。从10 000年到现在的氯化物浓度逐渐较低,以表明Barongarook高的充电率增加。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号