首页> 外文期刊>Hydrology and Earth System Sciences Discussions >Spatially distributed sensitivity of simulated global groundwater heads and flows to hydraulic conductivity, groundwater recharge, and surface water body parameterization
【24h】

Spatially distributed sensitivity of simulated global groundwater heads and flows to hydraulic conductivity, groundwater recharge, and surface water body parameterization

机译:模拟全球地下水头的空间分布式灵敏度,流动到液压导电性,地下水补给和表面水体参数化

获取原文
       

摘要

In global hydrological models, groundwater storages and flows are generally simulated by linear reservoir models. Recently, the first global gradient-based groundwater models were developed in order to improve the representation of groundwater–surface-water interactions, capillary rise, lateral flows, and human water use impacts. However, the reliability of model outputs is limited by a lack of data and by uncertain model assumptions that are necessary due to the coarse spatial resolution. The impact of data quality is presented in this study by showing the sensitivity of a groundwater model to changes in the only available global hydraulic conductivity dataset. To better understand the sensitivity of model output to uncertain spatially distributed parameters, we present the first application of a global sensitivity method for a global-scale groundwater model using nearly 2000?steady-state model runs of the global gradient-based groundwater model?G3M. By applying the Morris method in a novel domain decomposition approach that identifies global hydrological response units, spatially distributed parameter sensitivities are determined for a computationally expensive model. Results indicate that globally simulated hydraulic heads are equally sensitive to hydraulic conductivity, groundwater recharge, and surface water body elevation, though parameter sensitivities vary regionally. For large areas of the globe, rivers are simulated to be either losing or gaining, depending on the parameter combination, indicating a high uncertainty in simulating the direction of flow between the two compartments. Mountainous and dry regions show a high variance in simulated head due to numerical instabilities of the model, limiting the reliability of computed sensitivities in these regions. This is likely caused by the uncertainty in surface water body elevation. We conclude that maps of spatially distributed sensitivities can help to understand the complex behavior of models that incorporate data with varying spatial uncertainties. The findings support the selection of possible calibration parameters and help to anticipate challenges for a transient coupling of the model.
机译:在全球水文模型中,地下水储存和流量通常通过线性储存器模型进行模拟。最近,开发了第一基于全球基于梯度的地下水模型,以改善地下水表面 - 水相互作用,毛细管升高,横向流动和人用水冲击的表示。然而,模型输出的可靠性因缺乏数据而受到限制,并且由于由于粗略空间分辨率而需要的不确定模型假设。通过显示地下水模型对唯一可用的全局液压导电性数据集的变化来介绍数据质量的影响。为了更好地了解模型输出对空间分布参数的敏感性,我们介绍了使用近2000年的全局级地下水模型的全局灵敏度方法的第一次应用于全球梯度基础地下水模型的稳态模型?G3M 。通过在识别全局水文响应单元的新域分解方法中应用Morris方法,确定用于计算昂贵的模型的空间分布参数灵敏度。结果表明,全球模拟液压头对液压导电,地下水补给和地表水体仰角同等敏感,但是参数敏感性在区域上变化。对于全球的大面积,河流被模拟为失去或获得,取决于参数组合,指示在两个隔室之间模拟流动方向的高不确定性。由于模型的数值不稳定性,山地和干燥区域在模拟头上显示了模拟头的高方差,限制了这些地区计算的敏感性的可靠性。这可能是由地表水体仰角的不确定性引起的。我们得出结论,空间分布式敏感性的地图可以有助于了解包含具有不同空间不确定性的数据的模型的复杂行为。调查结果支持选择可能的校准参数,并有助于预测模型的瞬态耦合的挑战。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号