...
首页> 外文期刊>Procedia CIRP >Research on technology of additive manufacturing 3D metallic microstructure by maskless localized electrodepositing method
【24h】

Research on technology of additive manufacturing 3D metallic microstructure by maskless localized electrodepositing method

机译:无掩模局部电沉积方法添加制造3D金属微观结构技术研究

获取原文
           

摘要

The simulation and process research on additive manufacturing nickel three-dimensional microstructure by maskless localized electrodeposition with cone-shaped micro anode and micro fluidic electrolyte were carried out in this paper. The boundary conditions were set according to the process parameters of the maskless localized electrodeposition, the micro electrodepositing area was numerically simulated by using COMSOL Multiphysics software to analyze the influence of flow field distribution and electric field distribution on actual processing, the simulation results show that the factors affecting localized electrodeposition are as follow: Among the three factors, the interelectrode voltage has the greatest effect on the process, the duty cycle has the smallest effect, and the effect of the interelectrode gap is moderate. The CAD modelling and slice processing of 3D microstructure, and the movement path optimizing of electrode were completed with reference to the additive manufacturing method. The effects of main process parameters such as interelectrode voltage, pulse duty cycle and interelectrode gap on experimental results were studied by controlling single variable method and orthogonal experiment method. Study results demonstrate: Electrode shape, interelectrode voltage, pulse current duty cycle and interelectrode gap have different effects on microdeposition rate, surface morphology of microstructure and consistency of deposition rate. The optimized process parameters after orthogonal experiments are as follow: Interelectrode voltage(4V), pulse duty cycle(0.4), interelectrode gap(5μm), pulse frequency(10KHz), the movement speed of coordinate table’s X and Y axis are both 1μm/s, and Z axis is 5μm/s. The better electrodepositing results have been obtained: the electrodepositing rate may reach 460μm3/s and the simple nickel microstructure (nickel cylinder) has a maximum aspect ratio of 7:1.
机译:本文采用了通过锥形微阳极和微流体电解质通过无掩模局部电沉积和微流体电解质制造镍三维微结构的仿真和过程研究。根据无掩模局部电沉积的工艺参数设定边界条件,通过使用COMSOL MultiphySics软件来分析流场分布和电场分布对实际处理的影响,进行数值模拟微电沉积区域,模拟结果表明了影响局部电沉积的因素如下:在三个因素中,电极电压对该过程具有最大的影响,占空比具有最小的效果,并且电极间隙的效果是中等的。 3D微观结构的CAD建模和切片处理,以及电极的运动路径优化,参考添加剂制造方法完成。通过控制单一可变方法和正交实验方法研究了主要过程参数,例如电极电压互际电压,脉冲循环和电极间隙电极间隙。研究结果表明:电极形状,电极电压,脉冲电流占空比和电极间隙对微素率不同,微沉积速率,微观结构的表面形貌和沉积速率的一致性。正交实验后的优化工艺参数如下:电极电压(4V),脉冲占空比(0.4),电极间隙(5μm),脉冲频率(10kHz),坐标表的X和Y轴的移动速度均为1μm/ S和Z轴为5μm/ s。已经获得了更好的电沉积结果:电沉积速率可以达到460μm3/ s,并且简单的镍微观结构(镍缸)的最大纵横比为7:1。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号