...
首页> 外文期刊>The FASEB Journal >Defining the regenerative effects of native spider silk fibers on primary Schwann cells, sensory neurons, and nerve‐associated fibroblasts
【24h】

Defining the regenerative effects of native spider silk fibers on primary Schwann cells, sensory neurons, and nerve‐associated fibroblasts

机译:定义天然蜘蛛丝纤维对原发性施氏细胞,感觉神经元和神经相关成纤维细胞的再生效应

获取原文
           

摘要

The search for a suitable material to promote regeneration after long‐distance peripheral nerve defects turned the spotlight on spider silk. Nerve conduits enriched with native spider silk fibers as internal guiding structures previously demonstrated a regenerative outcome similar to autologous nerve grafts in animal studies. Nevertheless, spider silk is a natural material with associated limitations for clinical use. A promising alternative is the production of recombinant silk fibers that should mimic the outstanding properties of their native counterpart. However, in vitro data on the regenerative features that native silk fibers provide for cells involved in nerve regeneration are scarce. Thus, there is a lack of reference parameters to evaluate whether recombinant silk fiber candidates will be eligible for nerve repair in vivo. To gain insight into the regenerative effect of native spider silk, our study aims to define the behavioral response of primary Schwann cells (SCs), nerve‐associated fibroblasts (FBs), and dorsal root ganglion (DRG) neurons cultured on native dragline silk from the genus Nephila and on laminin coated dishes. The established multi‐color immunostaining panels together with confocal microscopy and live cell imaging enabled the analysis of cell identity, morphology, proliferation, and migration on both substrates in detail. Our findings demonstrated that native spider silk rivals laminin coating as it allowed attachment and proliferation and supported the characteristic behavior of all tested cell types. Axonal out‐growth of DRG neurons occurred along longitudinally aligned SCs that formed sustained bundled structures resembling Bungner bands present in regenerating nerves. The migration of SCs along the silk fibers achieved the reported distance of regenerating axons of about 1?mm per day, but lacked directionality. Furthermore, rFBs significantly reduced the velocity of rSCs in co‐cultures on silk fibers. In summary, this study (a) reveals features recombinant silk must possess and what modifications or combinations could be useful for enhanced nerve repair and (b) provides assays to evaluate the regenerative performance of silk fibers in vitro before being applied as internal guiding structure in nerve conduits in vivo.
机译:在长距离周围神经缺陷后,寻找合适的材料以促进再生的再生在蜘蛛丝的聚光灯上。富含天然蜘蛛丝纤维的神经管道作为内部引导结构以前证明了类似于动物研究中的自体神经移植物的再生结果。尽管如此,蜘蛛丝是一种具有相关限制的天然材料,可临床使用。有前途的替代方案是生产重组丝纤维,这些丝纤维应该模仿其天然对应物的出色特性。然而,在对生物丝纤维提供涉及神经再生的细胞的体外数据是稀缺的。因此,缺乏参考参数来评估重组丝纤维候选者是否有资格用于体内神经修复。要深入了解天然蜘蛛丝的再生效果,我们的研究旨在定义原发性雪旺细胞(SCS),神经相关成纤维细胞(FBS)的行为应答,以及在天然龙丝网上培养的背根神经节(DRG)神经元Nephila属和层粘连蛋白涂层。与共聚焦显微镜和活细胞成像一起,将所建立的多色免疫染色面板能够详细分析细胞同一性,形态,增殖和迁移。我们的研究结果表明,本地蜘蛛丝率是层粘涂层,因为它允许附着和增殖并支持所有测试细胞类型的特征行为。 DRG神经元的轴突出现在纵向对准的SCS中发生,形成类似于再生神经中存在的卵巢带的持续捆绑结构。 SCS沿着丝光纤维的迁移实现了每天约1毫米的再生轴突的报告距离,但缺乏方向性。此外,RFB显着降低了丝纤维上的共培养物中RSC的速度。总之,本研究(a)揭示了重组丝的特征必须具有,并且可用于增强神经修复的修饰或组合可用于评估,以评估在适用于内部引导结构之前在体外进行丝纤维的再生性能。神经管道在体内。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号