...
首页> 外文期刊>The Cryosphere Discussions >Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica
【24h】

Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica

机译:夏季表面质量平衡与南部南极洲的终身变化和表面熔化

获取原文
           

摘要

Understanding the interannual variability of surface mass balance (SMB) and surface melting in Antarctica is key to quantify the signal-to-noise ratio in climate trends, identify opportunities for multi-year climate predictions and assess the ability of climate models to respond to climate variability. Here we simulate summer SMB and surface melting from 1979 to 2017 using the Regional Atmosphere Model (MAR) at 10km resolution over the drainage basins of the Amundsen Sea glaciers in West Antarctica. Our simulations reproduce the mean present-day climate in terms of near-surface temperature (mean overestimation of 0.10°C), near-surface wind speed (mean underestimation of 0.42ms?1), and SMB (relative bias 20% over Thwaites glacier). The simulated interannual variability of SMB and melting is also close to observation-based estimates. For all the Amundsen glacial drainage basins, the interannual variability of summer SMB and surface melting is driven by two distinct mechanisms:?high summer SMB tends to occur when the Amundsen Sea Low (ASL) is shifted southward and westward, while high summer melt rates tend to occur when ASL is shallower (i.e.?anticyclonic anomaly). Both mechanisms create a northerly flow anomaly that increases moisture convergence and cloud cover over the Amundsen Sea and therefore favors snowfall and downward longwave radiation over the ice sheet. The part of interannual summer SMB variance explained by the ASL longitudinal migrations increases westward and reaches 40% for Getz. Interannual variation in the ASL relative central pressure is the largest driver of melt rate variability, with 11% to 21% of explained variance (increasing westward). While high summer SMB and melt rates are both favored by positive phases of El Ni?o–Southern Oscillation (ENSO), the Southern Oscillation Index (SOI) only explains 5% to 16% of SMB or melt rate interannual variance in our simulations, with moderate statistical significance. However, the part explained by SOI in the previous austral winter is greater, suggesting that at least a part of the ENSO–SMB and ENSO–melt relationships in summer is inherited from the previous austral winter. Possible mechanisms involve sea ice advection from the Ross Sea and intrusions of circumpolar deep water combined with melt-induced ocean overturning circulation in ice shelf cavities. Finally, we do not find any correlation with the Southern Annular Mode (SAM) in summer.
机译:了解南极地表余额(SMB)和表面熔化的依赖性变化是量化气候趋势中信噪比的关键,确定多年气候预测的机会,并评估气候模型应对气候的能力变化性。在这里,我们使用10km的Subst Model(MAR)在西南南极洲Amundsen海冰川的排水盆地下,从1979年到2017年夏季SMB和表面熔化。我们的仿真在近表面温度(平均高估0.10°C),近表面风速(平均低估为0.42ms≤1),以及SMB(相对偏见20%,在冰川上相对偏差20% )。 SMB和熔化的模拟续集可变性也接近了基于观察的估计。对于所有Amundsen冰川排水盆地,夏季SMB和表面熔化的续变性是由两个不同的机制驱动:?当Amundsen Sea Low(ASL)向南和向西转移时,夏季SMB趋于发生,而高夏季熔体率当ASL较浅时倾向于发生(即,反气旋异常)。这两种机制都会产生北流动异常,增加湿润的融合和云覆盖在Amundsen海洋上,因此在冰盖上有利于降雪和向下的长波辐射。由ASL纵向迁移解释的持续夏季SMB方差的部分向西增加,Getz的40%达到40%。 ASL相对中心压力的续集变化是熔融率变异性最大的驱动器,引出了11%至21%的解释方差(向西增加)。虽然高夏季SMB和熔融率都受到EL NI的正阶段的青睐,但南方​​振荡指数(SOI)只解释了我们模拟中的SMB或融合率际差异的5%至16%,具有适度统计学意义。然而,SOI在以前的澳大利亚冬季解释的部分更大,这表明夏季至少在夏季的ENSO-SMB和ENSO-MELT关系中的关系。可能的机制涉及海冰从罗斯海洋和循环深水的入侵,联合熔体诱导的海洋倾覆在冰架洞穴中。最后,我们没有发现夏季与南方环形模式(SAM)的任何相关性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号