首页> 外文期刊>The Cryosphere Discussions >Spatiotemporal variability and decadal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers
【24h】

Spatiotemporal variability and decadal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers

机译:卫星散射仪观察到南极海冰的雪花流程的时空变异性和跨越趋势

获取原文
       

摘要

The timing and intensity of snowmelt processes on sea ice are key drivers determining the seasonal sea-ice energy and mass budgets. In the Arctic, satellite passive microwave and radar observations have revealed a trend towards an earlier snowmelt onset during the last decades, which is an important aspect of Arctic amplification and sea-ice decline. Around Antarctica, snowmelt on perennial ice is weak and very different than in the Arctic, with most snow surviving the summer. Here we compile time series of snowmelt onset dates on seasonal and perennial Antarctic sea ice from 1992 to 2014/15 using active microwave observations from the European Space Agency's (ESA) European Remote Sensing (ERS) 1 and 2 missions (ERS-1 and ERS-2), Quick Scatterometer (QSCAT), and Advanced Scatterometer (ASCAT) radar scatterometers. We define two snowmelt transition stages: a weak backscatter rise, indicating the initial warming and destructive metamorphism of the snowpack (pre-melt), followed by a rapid backscatter rise, indicating the onset of thaw–freeze cycles (snowmelt). Results show large interannual variability, with an average pre-melt onset date of 29?November and melt onset of 10?December, respectively, on perennial ice, without any significant trends over the study period, consistent with the small trends of Antarctic sea-ice extent. There was a latitudinal gradient from early snowmelt onsets in mid-November in the northern Weddell Sea to late (end of December) or even absent snowmelt conditions in the southern Weddell?Sea. We show that QSCAT Ku-band-derived (13.4GHz signal frequency) pre-melt and snowmelt onset dates are earlier by 20 and 18d, respectively, than ERS and ASCAT C-band-derived (5.6GHz) dates. This offset has been considered when constructing the time series. Snowmelt onset dates from passive microwave observations (37GHz) are later by 14 and 6d than those from the scatterometers, respectively. Based on these characteristic differences between melt onset dates observed by different microwave wavelengths, we developed a conceptual model which illustrates how the seasonal evolution of snow temperature profiles may affect different microwave bands with different penetration depths. These suggest that future multi-frequency active and passive microwave satellite missions could be used to resolve melt processes throughout the vertical snow column of thick snow on perennial Antarctic sea?ice.
机译:海冰上散雪流程的时序和强度是确定季节性海冰能量和大规模预算的关键驱动因素。在北极,卫星被动微波和雷达观测揭示了在过去几十年中早期雪花发作的趋势,这是北极扩增和海冰下降的一个重要方面。周围的南极洲,常年冰上的雪地融雪是弱者而不是在北极,大多数雪幸存下来。在这里,我们在1992年到2014/15年度,使用欧洲航天局(ESA)欧洲遥感(ERS-1和ERS)的主动微波观测,从1992年到2014/15编制了季节性和多年生南极海冰的时间系列雪花南极海冰。 -2),快速散射计(QSCAT)和先进的散射计(ASCAT)雷达散射仪。我们定义了两个雪光过渡阶段:弱回散率上升,表明积雪(预熔体)的初始变暖和破坏性变质,其次是快速反向散射升高,表明解冻冻结循环(雪花)的开始。结果显示较大的际际变异性,平均熔体前发病日期为29岁?11月份和融化了10岁?12月,分别在常年冰上,没有任何重大趋势,与南极海洋的小趋势一致 - 冰范围。从11月中旬在德国北部的早期雪橇上延伸了纬度渐变,达到了南德尔南部的夜间(12月底)甚至缺乏雪地氛围我们表明QSCAT KU频段导出(13.4GHz信号频率)预熔融和雪花发作日期分别比ERS和ASCAT C波段导出(5.6GHz)日期分别为20和18d。在构建时间序列时已经考虑了此偏移量。被动微波观测(37GHz)的雪光发病日期分别比来自散射仪的雪光(37GHz)的日期。基于不同微波波长观察到的熔体开始日期之间的这些特征差异,我们开发了一种概念模型,其说明了雪温曲线的季节性演化如何影响不同的渗透深度的不同微波带。这些表明,未来的多频活性和被动微波卫星任务可用于解决整个南极海上厚雪的垂直雪柱的熔体过程?冰。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号