...
首页> 外文期刊>Plant Biotechnology Journal >Manipulation of Synechocystis sp. PCC 6803 as a platform for functional identification of genes involved in carotenoid metabolism
【24h】

Manipulation of Synechocystis sp. PCC 6803 as a platform for functional identification of genes involved in carotenoid metabolism

机译:SyneChocystis SP的操纵。 PCC 6803作为涉及类胡萝卜素代谢的基因功能鉴定的平台

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Carotenoids are widely distributed in nature. They function as light-harvesting/photoprotective pigments, furnish flowers and fruits with distinct colours, and benefit human health as essential phytonutrients (Rodriguez-Concepcion et al., 2018). All photosynthetic organisms synthesize lycopene and b-carotene, and higher plants share a more complicated set of carotenoids, including carotenes and their oxygenated derivatives. However, some carotenoids only exist in particular species, such as astaxanthin in the green alga Haematococcus pluvialis and lactucaxanthin in lettuce (Lactuca sativa) (Rodriguez-Concepcion et al., 2018). The elucidation of enzymes that catalyse their biosynthesis would enable the manipulation of their production by genetic engineering and synthetic biology strategies. It is usually challenging to determine the catalytic activities of these enzymes by in vitro assays using recombinant proteins in an aqueous system, because most of their substrates and products are lipid-soluble. Therefore, in vivo assays are also used for functional characterization. The pigment complementation system in Escherichia coli is able to synthesize a wide range of carotenoid substrates and has enabled the discovery of a large number of enzymes in this pathway (Cunningham and Gantt, 2007). However, the activities of some enzymes rely on additional cofactors and/or membrane structures. For example, the lycopene b-cyclase (LCYB) CruA requires a bound chlorophyll a molecule, which is absent in E. coli, for its activity (Xiong et al., 2017). Although functional complementation and/or overexpression in Arabidopsis are also widely used for characterizing new enzymes, the complicated and dynamic repertoire of endogenous carotenoids, together with the possible redundancy of enzymes, might mask the functions of the transgenes (Quinlan et al., 2007).
机译:类胡萝卜素在自然界中广泛分布。它们用作光收获/光保护颜料,提供具有不同颜色的花和水果,并使人类健康受益于必需的植物营养素(Rodriguez-Concepcion等,2018)。所有光合生物合成番茄红素和B-胡萝卜素,高等植物共享一种更复杂的类胡萝卜素,包括雌激素及其含氧衍生物。然而,一些类胡萝卜素仅存在于特定物种中,例如绿藻血液血管蛋白Pluvialis和Lactucaanshantin的虾青素(Lactuca sativa)(Rodriguez-concepcion等,2018)。阐明催化生物合成的酶可以通过基因工程和合成生物学策略来操纵它们的生产。通过在含水系统中使用重组蛋白质的体外测定来确定这些酶的催化活性通常是挑战性的,因为它们的大多数底物和产物是脂质可溶的。因此,体内测定也用于功能表征。大肠杆菌中的颜料互补系统能够合成各种类胡萝卜素基质,并能够发现该途径中大量酶(Cunningham和2007)。然而,一些酶的活性依赖于额外的辅因子和/或膜结构。例如,番茄红素B-环缩酶(LCYB)Crua需要结合的叶绿素分子,其在大肠杆菌中不存在于其活性(熊等,2017)。尽管拟南芥中的功能互补和/或过表达也广泛用于表征新酶,内源性类胡萝卜素的复杂和动态的曲目,以及可能的酶的冗余可能掩盖转基因的功能(Quinlan等,2007) 。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号