首页> 外文期刊>Physical Review X >Gaussian Process States: A Data-Driven Representation of Quantum Many-Body Physics
【24h】

Gaussian Process States: A Data-Driven Representation of Quantum Many-Body Physics

机译:高斯流程状态:量子数量的数据驱动的表示

获取原文
           

摘要

We present a novel, nonparametric form for compactly representing entangled many-body quantum states, which we call a “Gaussian process state.” In contrast to other approaches, we define this state explicitly in terms of a configurational data set, with the probability amplitudes statistically inferred from this data according to Bayesian statistics. In this way, the nonlocal physical correlated features of the state can be analytically resummed, allowing for exponential complexity to underpin the ansatz, but efficiently represented in a small data set. The state is found to be highly compact, systematically improvable, and efficient to sample, representing a large number of known variational states within its span. It is also proven to be a “universal approximator” for quantum states, able to capture any entangled many-body state with increasing data-set size. We develop two numerical approaches which can learn this form directly—a fragmentation approach and direct variational optimization—and apply these schemes to the fermionic Hubbard model. We find competitive or superior descriptions of correlated quantum problems compared to existing state-of-the-art variational ansatzes, as well as other numerical methods.
机译:我们提出了一种小说,非参数形式,用于紧凑地代表纠缠的多体量子状态,我们称之为“高斯过程状态”。与其他方法相比,我们根据配置数据集明确定义该状态,其中概率幅度根据贝叶斯统计数据统计地推断出这些数据。以这种方式,可以分析状态的非识别物理相关特征,允许指数复杂度在ansatz中,但是在小数据集中有效地表示。该状态被发现是高度紧凑,系统地可更新,并且对样品有效,在其跨度内表示大量已知的变形状态。还证明是量子状态的“通用近似器”,能够随着数据集大小的增加而捕获任何纠缠的多个身体状态。我们开发了两个可以直接学习此表单的两种数字方法 - 分段方法和直接变分优化 - 并将这些方案应用于Fermionic Hubbard模型。与现有的最先进的变形尖端以及其他数值方法相比,我们发现对相关量子问题的竞争或卓越的描述。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号