首页> 外文期刊>Physical Review X >Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation
【24h】

Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation

机译:旋转Quintet在硅双量子点:旋转封锁和放松

获取原文
           

摘要

Spins in gate-defined silicon quantum dots are promising candidates for implementing large-scale quantum computing. To read the spin state of these qubits, the mechanism that has provided the highest fidelity is spin-to-charge conversion via singlet-triplet spin blockade, which can be detected in situ using gate-based dispersive sensing. In systems with a complex energy spectrum, like silicon quantum dots, accurately identifying when singlet-triplet blockade occurs is hence of major importance for scalable qubit readout. In this work, we present a description of spin-blockade physics in a tunnel-coupled silicon double quantum dot defined in the corners of a split-gate transistor. Using gate-based magnetospectroscopy, we report successive steps of spin blockade and spin-blockade lifting involving spin states with total spin angular momentum up to S ? 3. More particularly, we report the formation of a hybridized spin-quintet state and show triplet-quintet and quintet-septet spin blockade, enabling studies of the quintet relaxation dynamics from which we find T1 ~ 4 μs. Finally, we develop a quantum capacitance model that can be applied generally to reconstruct the energy spectrum of a double quantum dot, including the spin-dependent tunnel couplings and the energy splitting between different spin manifolds. Our results allow for the possibility of using Si complementary metal-oxide-semiconductor quantum dots as a tunable platform for studying high-spin systems.
机译:门式定义的硅量子点中的旋转是用于实现大规模量子计算的候选者。为了读取这些QUBIT的自旋状态,提供了最高保真度的机构是通过单次三联旋转封闭式旋转电荷转换,这可以使用基于栅极的色散感测原位检测。在具有复杂能谱的系统中,如硅量子点,准确地识别出单次三重态封锁时,因此对可伸缩量子位读数进行了重大重要性。在这项工作中,我们在分开栅极晶体管的角落中定义的隧道耦合硅双量子点中的旋转封闭物理学的描述。采用基于栅极的磁络图,我们报告了连续步骤的旋转封锁和旋转封锁升降,涉及旋转状态,总旋转角度势头到S? 3.更具体地说,我们报告了形成杂交的旋转Quintet状态,并显示三重素 - 五级和Quintet-Semet旋转封闭,从而能够研究我们发现T1〜4μs的Quintet松弛动态。最后,我们开发了一种量子电容模型,其通常可以重建双量子点的能谱,包括自旋依赖隧道联轴器和不同自旋歧管之间的能量分裂。我们的结果允许使用Si互补金属氧化物半导体量子点作为学习高自旋系统的可调平台。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号