首页> 外文期刊>Solar RRL >Identification of Recombination Losses in CdSe/CdTe Solar Cells from Spectroscopic and Microscopic Time-Resolved Photoluminescence
【24h】

Identification of Recombination Losses in CdSe/CdTe Solar Cells from Spectroscopic and Microscopic Time-Resolved Photoluminescence

机译:从光谱和微观时间分辨光致发光的光谱和微观时间分辨光致发光的CDSE / Cdte太阳能电池中的重组损失识别

获取原文
获取原文并翻译 | 示例
           

摘要

Due to the lowest-cost and best reliability, CdTe solar cells are the leading thin-film photovoltaic technology. Increasing open-circuit voltage by reducing recombination represents the most promising path toward further improvements. Analysis is needed to identify limitations that cause efficiency losses. To achieve this goal for Cu-doped CdSe/CdTe solar cells, time-resolved spectroscopy and microscopy are developed and applied. Recombination lifetimes and radiative efficiency identify that defect-mediated recombination is the dominant voltage loss mechanism. When carrier lifetimes are averaged over many crystalline grains, they increase from 180 to 430 ns when Al_2O_3 is applied to the back contact. The quasi- Fermi-level splitting correspondingly increases from 880–905 to 906–931 mV, indicating a pathway to overcome the long-standing 900 mV voltage limitation. However, the dominant recombination losses are attributed to the absorber bulk. From microscopic carrier lifetime measurements, it is identified that space charge fields due to charged grain boundaries (GBs) lead to recombination in the CdTe absorber bulk. At high injection, GB space charge fields are screened, but that occurs above 1 Sun excitation conditions. Alloying with selenium in the near-interface CdSeTe absorber region reduces GB losses and is identified as one of the factors leading to high radiative and power conversion efficiency.
机译:由于最低成本和最佳可靠性,CDTE太阳能电池是领先的薄膜光伏技术。通过还原重组增加开路电压代表进一步改进的最有希望的路径。需要分析来识别导致效率损失的限制。为了实现Cu掺杂Cdse / Cdte太阳能电池的这种目标,开发并施加了时间分辨的光谱和显微镜。重组寿命和辐射效率识别缺陷介导的重组是主要的电压损失机构。当载体寿命在许多结晶晶粒上平均时,当Al_2O_3施加到后接触时,它们从180到430ns增加。准细晶级分裂相应地从880-905增加到906-931 mV,表示克服长期900 mV电压限制的路径。然而,主导重组损失归因于吸收体批量。从微观载流子寿命测量中,识别出由于带电晶界(GBS)引起的空间电荷导致CDTE吸收体块状的重组。在高注射时,筛选GB空间充电场,但发生在1次阳光激发条件以上。近接口CDSete吸收区中硒的合金化降低了GB损耗,并被识别为导致高辐射和功率转换效率的因素之一。

著录项

  • 来源
    《Solar RRL》 |2021年第4期|2000775.1-2000775.13|共13页
  • 作者单位

    Materials Chemical and Computational Sciences National Renewable Energy Laboratory 15013 Denver West Parkway Golden CO 80401 USA;

    Materials Chemical and Computational Sciences National Renewable Energy Laboratory 15013 Denver West Parkway Golden CO 80401 USA;

    California Advanced Research First Solar 1035 Walsh Avenue Santa Clara CA 95050 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CdTe; characterizations; photoluminescence; solar cells; thin films;

    机译:cdte;特征;光致发光;太阳能电池;薄膜;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号