...
首页> 外文期刊>Solar RRL >Theoretical Insight into High-Efficiency Triple-Junction Tandem Solar Cells via the Band Engineering of Antimony Chalcogenides
【24h】

Theoretical Insight into High-Efficiency Triple-Junction Tandem Solar Cells via the Band Engineering of Antimony Chalcogenides

机译:通过锑硫酸锑群工程对高效三叉串联太阳能电池的理论洞察

获取原文
获取原文并翻译 | 示例
           

摘要

Antimony chalcogenides have become a family of promising photoelectric materials for high-efficiency solar cells. To date, single-junction solar cells based on individual antimony selenide or sulfide are dominant and show limited photoelectric conversion efficiency. Therefore, great gaps remain for the multiple junction solar cells. Herein, triple-junction antimony chalcogenides-based solar cells are designed and optimized with a theoretical efficiency of 32.98% through band engineering strategies with Sb_2S_3/Sb_2(S_(0.7)Se_(0.3))_3/Sb_2Se_3 stacking. The optimum Se content of themid-cell should bemaintained low, i.e., 30% for achieving a low defect density in an absorber layer. Therefore, Sb_2(S_(0.7)Se_(0.3))_3-based mid solar cells have contributed to elevate the external quantum efficiency in triple-junction devices by the full utilization of the solar spectrum. In a single-junction solar cell, the bandgap gradient is regulated through the Se content gradient along the depth profile of Sb_2(S_(1-x)Se_x)_3. Besides, an increasing Se content profile provides an additional built-in electric field for boosting hole charge carrier collection. Thus, the high charge carrier generation rate leads to a 17.96% improvement in the conversion efficiency compared with a conventional cell. This work may pave the way to boost the conversion efficiency of antimony chalcogenides-based solar cells to their theoretical limits.
机译:锑硫属元素化物已成为高效太阳能电池有希望的光电材料的家庭。迄今为止,基于单个硒化烯烃或硫化物的单结太阳能电池是显性的并且显示有限的光电转换效率。因此,多结太阳能电池留下了极大的间隙。在此,基于三联的锑胆碱的太阳能电池设计和优化,通过带有SB_2S_3 / SB_2的频段工程策略(S_(0.7)SE_(0.3))_ 3 / SB_2SE_3堆叠,理论效率为32.98%。优选的Se含量应为低低,即在吸收层中实现低缺陷密度的30%。因此,SB_2(S_(0.7)SE_(0.3))_基于3的中间太阳能电池有助于通过充分利用太阳光谱来提高三界装置中的外部量子效率。在单结太阳能电池中,带隙梯度通过沿SB_2的深度分布(S_(1-x)SE_x)_3的深度分布来调节通过SE内容梯度。此外,增加的SE内容简档提供了一种用于升压孔电荷载体收集的额外内置电场。因此,与常规电池相比,高电荷载流量导致转化效率的提高17.96%。这项工作可能会铺平锑基硫胺基的太阳能电池的转化效率,以提高其理论限制。

著录项

  • 来源
    《Solar RRL》 |2021年第4期|2000800.1-2000800.12|共12页
  • 作者单位

    Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology Ministry of Education(Northeast Electric Power University)Jilin 132012 China School of Electrical Engineering Northeast Electric Power University Jilin 132012 China;

    Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology Ministry of Education(Northeast Electric Power University)Jilin 132012 China School of Electrical Engineering Northeast Electric Power University Jilin 132012 China;

    Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology Ministry of Education(Northeast Electric Power University)Jilin 132012 China School of Electrical Engineering Northeast Electric Power University Jilin 132012 China;

    Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology Ministry of Education(Northeast Electric Power University)Jilin 132012 China School of Electrical Engineering Northeast Electric Power University Jilin 132012 China;

    School of Chemical Engineering Northeast Electric Power University Jilin 132012 China;

    College of Electronic Information and Optical Engineering Nankai University Tianjin 300350 China;

    College of Electronic Information and Optical Engineering Nankai University Tianjin 300350 China;

    Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research(iAIR)University of Jinan Jinan 250022 China;

    College of Energy Soochow Institute for Energy and Materials Innovations Soochow University Suzhou 215006 China Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow University Suzhou 215006 China Centre of Polymer and Carbon Materials Polish Academy of Sciences M.Curie Sklodowskiej 34 Zabrze 41-819 Poland Institute for Complex Materials IFW Dresden 20 Helmholtz Strasse Dresden 01069 Germany Institute of Environmental Technology VSB-Technical University of Ostrava 17.Listopadu 15 Ostrava 708 33 Czech Republic;

    Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research(iAIR)University of Jinan Jinan 250022 China;

    Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research(iAIR)University of Jinan Jinan 250022 China State Key Laboratory of Crystal Materials Center of Bio&Micro/Nano Functional Materials Shandong University 27 Shandanan Road Jinan 250100 China;

    Institute for Materials Science and Max Bergmann Center of Biomaterials Technische Universitaet Dresden Dresden 01062 Germany Center for Advancing Electronics Dresden Technische Universitaet Dresden Dresden 01062 Germany Dresden Center for Computational Materials Science Technische Universitaet Dresden Dresden 01062 Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    antimony chalcogenides; band engineering; quantum efficiencies; thin films; triple-junction tandem solar cells;

    机译:锑硫属化物;乐队工程;量子效率;薄膜;三界串联太阳能电池;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号