...
首页> 外文期刊>Solar RRL >Material Design and Surface/Interface Engineering of Photoelectrodes for Solar Water Splitting
【24h】

Material Design and Surface/Interface Engineering of Photoelectrodes for Solar Water Splitting

机译:太阳能水分裂光电子的材料设计和表面/接口工程

获取原文
获取原文并翻译 | 示例
           

摘要

Photoelectrochemical (PEC) water splitting can convert solar energy into clean and renewable hydrogen energy, showing a promising application prospect. However, large-scale implementation of PEC water splitting is now hampered by insufficient solar-to-hydrogen conversion efficiency, which requires the development of highperformance photoelectrodes. Key processes that determine the water splitting performance of photoelectrodes are the light absorption, separation, and transport efficiency of photogenerated electrons and holes and the surface reaction of water oxidation/reduction. Concerning these three key processes, various material design and surface/interface engineering strategies have been explored to improve the performance of photoelectrodes. Herein, these strategies for photoelectrode optimization of the past decades are summarized and discussed in terms of microand nanostructuring, heterojunction construction, element doping, surface passivation, plasmonic metal coating, and electrocatalyst modification. Special attention is given to how these strategies play their roles in improving the performance of photoelectrodes, based on which it is hoped light is shed on the design principles and modification routes for high-performance photoelectrodes.
机译:光电化学(PEC)水分裂可以将太阳能转化为清洁和可再生的氢能量,显示出有希望的应用前景。然而,通过不足的太阳能转换效率,现在妨碍了PEC水分裂的大规模实施,这需要开发高性能光电。确定光电极的水分裂性能的关键过程是光生电子和孔的光吸收,分离和运输效率以及水氧化/还原的表面反应。关于这三个关键过程,已经探索了各种材料设计和表面/接口工程策略来提高光电极的性能。这里,在微型纳米结构,异质结施工,元素掺杂,表面钝化,等离子体金属涂布和电催化剂改性方面,总结和讨论了过去几十年的光电极优化策略。特别注意这些策略如何发挥作用,以提高光电极的性能,基于其希望光线在设计原则和高性能光电图的修改路线上。

著录项

  • 来源
    《Solar RRL》 |2021年第4期|2100100.1-2100100.26|共26页
  • 作者单位

    Collaborative Innovation Center of Advanced Microstructures National Laboratory of Solid State Microstructures School of Physics Nanjing University 22 Hankou Road Nanjing 210093 P.R.China School of Materials Engineering Jinling Institute of Technology 99 Hongjing Avenue Nanjing 211169 P.R.China;

    Collaborative Innovation Center of Advanced Microstructures National Laboratory of Solid State Microstructures School of Physics Nanjing University 22 Hankou Road Nanjing 210093 P.R.China College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P.R.China;

    Collaborative Innovation Center of Advanced Microstructures National Laboratory of Solid State Microstructures School of Physics Nanjing University 22 Hankou Road Nanjing 210093 P.R.China College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P.R.China;

    School of Materials Engineering Jinling Institute of Technology 99 Hongjing Avenue Nanjing 211169 P.R.China;

    School of Materials Engineering Jinling Institute of Technology 99 Hongjing Avenue Nanjing 211169 P.R.China;

    Collaborative Innovation Center of Advanced Microstructures National Laboratory of Solid State Microstructures School of Physics Nanjing University 22 Hankou Road Nanjing 210093 P.R.China College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P.R.China;

    Collaborative Innovation Center of Advanced Microstructures National Laboratory of Solid State Microstructures School of Physics Nanjing University 22 Hankou Road Nanjing 210093 P.R.China College of Engineering and Applied Sciences Nanjing University Nanjing 210093 P.R.China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    photoelectrochemical water splitting; photoelectrodes; solar energy conversion; surface/interface engineering;

    机译:光电化学水分裂;光电子;太阳能转换;表面/接口工程;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号