首页> 外文期刊>Royal Society Open Science >On the relations of phase separation and Hi-C maps to epigenetics
【24h】

On the relations of phase separation and Hi-C maps to epigenetics

机译:关于相分离与高C地图的关系

获取原文
           

摘要

The relationship between compartmentalization of the genome and epigenetics is long and hoary. In 1928, Heitz defined heterochromatin as the largest differentiated chromatin compartment in eukaryotic nuclei. Müller's discovery of position-effect variegation in 1930 went on to show that heterochromatin is a cytologically visible state of heritable (epigenetic) gene repression. Current insights into compartmentalization have come from a high-throughput top-down approach where contact frequency (Hi-C) maps revealed the presence of compartmental domains that segregate the genome into heterochromatin and euchromatin. It has been argued that the compartmentalization seen in Hi-C maps is owing to the physiochemical process of phase separation. Oddly, the insights provided by these experimental and conceptual advances have remained largely silent on how Hi-C maps and phase separation relate to epigenetics. Addressing this issue directly in mammals, we have made use of a bottom-up approach starting with the hallmarks of constitutive heterochromatin, heterochromatin protein 1 (HP1) and its binding partner the H3K9me2/3 determinant of the histone code. They are key epigenetic regulators in eukaryotes. Both hallmarks are also found outside mammalian constitutive heterochromatin as constituents of larger (0.1–5 Mb) heterochromatin -like domains and smaller (less than 100 kb) complexes. The well-documented ability of HP1 proteins to function as bridges between H3K9me2/3-marked nucleosomes contributes to polymer–polymer phase separation that packages epigenetically heritable chromatin states during interphase. Contacts mediated by HP1 ‘bridging’ are likely to have been detected in Hi-C maps, as evidenced by the B4 heterochromatic subcompartment that emerges from contacts between large KRAB-ZNF heterochromatin -like domains. Further, mutational analyses have revealed a finer, innate, compartmentalization in Hi-C experiments that probably reflect contacts involving smaller domains/complexes. Proteins that bridge (modified) DNA and histones in nucleosomal fibres—where the HP1–H3K9me2/3 interaction represents the most evolutionarily conserved paradigm—could drive and generate the fundamental compartmentalization of the interphase nucleus. This has implications for the mechanism(s) that maintains cellular identity, be it a terminally differentiated fibroblast or a pluripotent embryonic stem cell.
机译:基因组和表观遗传学分区间的关系漫长而核心。 1928年,Heitz定义了异象素作为真核核中的最大分化的染色质室。 Müller在1930年发现的位置效果差异逐渐显示,异铬胺是一种细胞学上可见的遗传性(表观遗传)基因抑制状态。当前进入分区化的见解来自高通量的自上而下方法,其中接触频率(HI-C)图显示出分区域的存在,其将基因组分成异铬胺和欧洲甜菜素。有人认为,在Hi-C地图中看到的分区化是由于相分离的物理化学过程。奇怪的是,这些实验和概念进步所提供的见解在很大程度上沉默了Hi-C地图和相分离与表观遗传学相关。直接在哺乳动物中解决这个问题,我们已经利用了从组成型异铬蛋白,异铬蛋白蛋白1(HP1)的标志和其结合伴侣组蛋白代码的标志性的自下而上的方法。它们是真核生物中的主要表观遗传调节因子。在哺乳动物组成型异铬胺外,也发现两个标志性均为较大(0.1-5 MB)异铬胺蛋白 - 样域的成分和更小(小于100kb)络合物。 HP1蛋白在H3K9ME2 / 3标记的核肉中作为桥接功能的良好记录的能力有助于聚合物 - 聚合物相分离,即在相互作用期间包装外膜遗传染色质状态。由HP1'桥接'介导的触点可能在Hi-C地图中检测到,如B4异色子组分所证明的,其从大Krab-ZnF杂粒素 - 样域之间的接触产生。此外,突变分析揭示了在HI-C实验中的更精细,先天的分区,可能反映涉及较小结构域/复合物的接触。丙烯蛋白桥(修饰)DNA和核体纤维中的组蛋白 - 其中HP1-H3K9ME2 / 3相互作用代表最具进化的守恒范式 - 可以驱动并产生间核的基本隔间化。这对维持细胞同一性的机制具有影响,使其成为终端分化的成纤维细胞或多能胚胎干细胞。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号