...
首页> 外文期刊>mSystems >Visualizing Microbial Community Dynamics via a Controllable Soil Environment
【24h】

Visualizing Microbial Community Dynamics via a Controllable Soil Environment

机译:通过可控土壤环境可视化微生物群落动态

获取原文
           

摘要

Understanding the basic biology that underpins soil microbiome interactions is required to predict the metaphenomic response to environmental shifts. A significant knowledge gap remains in how such changes affect microbial community dynamics and their metabolic landscape at microbially relevant spatial scales. Using a custom-built SoilBox system, here we demonstrated changes in microbial community growth and composition in different soil environments (14%, 24%, and 34% soil moisture), contingent upon access to reservoirs of nutrient sources. The SoilBox emulates the probing depth of a common soil core and enables determination of both the spatial organization of the microbial communities and their metabolites, as shown by confocal microscopy in combination with mass spectrometry imaging (MSI). Using chitin as a nutrient source, we used the SoilBox system to observe increased adhesion of microbial biomass on chitin islands resulting in degradation of chitin into N -acetylglucosamine (NAG) and chitobiose. With matrix-assisted laser desorption/ionization (MALDI)-MSI, we also observed several phospholipid families that are functional biomarkers for microbial growth on the chitin islands. Fungal hyphal networks bridging different chitin islands over distances of 27?mm were observed only in the 14% soil moisture regime, indicating that such bridges may act as nutrient highways under drought conditions. In total, these results illustrate a system that can provide unprecedented spatial information about interactions within soil microbial communities as a function of changing environments. We anticipate that this platform will be invaluable in spatially probing specific intra- and interkingdom functional relationships of microbiomes within soil. IMPORTANCE Microbial communities are key components of the soil ecosystem. Recent advances in metagenomics and other omics capabilities have expanded our ability to characterize the composition and function of the soil microbiome. However, characterizing the spatial metabolic and morphological diversity of microbial communities remains a challenge due to the dynamic and complex nature of soil microenvironments. The SoilBox system, demonstrated in this work, simulates an ~12-cm soil depth, similar to a typical soil core, and provides a platform that facilitates imaging the molecular and topographical landscape of soil microbial communities as a function of environmental gradients. Moreover, the nondestructive harvesting of soil microbial communities for the imaging experiments can enable simultaneous multiomics analysis throughout the depth of the SoilBox. Our results show that by correlating molecular and optical imaging data obtained using the SoilBox platform, deeper insights into the nature of specific soil microbial interactions can be achieved.
机译:理解基础生物学是需要土壤微生物组相互作用的基本生物学,以预测对环境变化的析析反应。在微生物相关空间尺度下,这种变化如何影响微生物群落动态及其代谢景观的重要知识差距。在这里,使用定制构建的土箱系统,我们证明了不同土壤环境中的微生物群落生长和组成的变化(14%,24%和34%的土壤水分),或者在进入营养来源的储层的过程中。土壤盒仿真普通土核的探测深度,并能够确定微生物群落的空间组织及其代谢物,如共聚焦显微镜与质谱成像(MSI)组合所示。用甲酸肽作为营养源,我们使用了肮脏的系统来观察小植物岛上的微生物生物量增加的粘附性导致几丁胺蛋白(NAG)和千核苷酸的降解。利用基质辅助激光解吸/电离(MALDI)-MSI,我们还观察到几种磷脂家族,该家族是几丁醇岛上的微生物生长的功能生物标志物。在14%的土壤湿度制度中仅观察到桥接不同的几丁质岛的真菌剪状岛,表明这种桥接可能在干旱条件下充当营养高速公路。总共,这些结果示出了可以提供关于土壤微生物社区内的相互作用的前所未有的空间信息作为改变环境的函数。我们预计该平台在空间上探测土壤中微生物体和互相突出的特定和互相间的功能关系非常宝贵。重要的微生物社区是土壤生态系统的关键组成部分。近期偏心组合和其他OMICS能力的进展扩大了我们对土壤微生物组的构成和功能的表征能力。然而,表征微生物社区的空间代谢和形态多样性仍然是由于土壤微环境的动态和复杂性的挑战。在这项工作中展示了肮脏的系统,模拟了〜12厘米的土壤深度,类似于典型的土壤核心,提供了一种平台,便于将土壤微生物群群的分子和地形景观成像为环境梯度的函数。此外,对成像实验的土壤微生物社区的非破坏性收集可以在整个污垢箱的深度方面进行同步多孔分析。我们的研究结果表明,通过使用肮脏获得的分子和光学成像数据,可以实现对特定土壤微生物相互作用的性质的更深层次的见解。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号