首页> 外文期刊>mSystems >Cellular and Structural Basis of Synthesis of the Unique Intermediate Dehydro-F 420 -0 in Mycobacteria
【24h】

Cellular and Structural Basis of Synthesis of the Unique Intermediate Dehydro-F 420 -0 in Mycobacteria

机译:在分枝杆菌中独特中间脱氢-F 420 -0合成的细胞和结构基础

获取原文
           

摘要

F 420 is a low-potential redox cofactor used by diverse bacteria and archaea. In mycobacteria, this cofactor has multiple roles, including adaptation to redox stress, cell wall biosynthesis, and activation of the clinical antitubercular prodrugs pretomanid and delamanid. A recent biochemical study proposed a revised biosynthesis pathway for F 420 in mycobacteria; it was suggested that phosphoenolpyruvate served as a metabolic precursor for this pathway, rather than 2-phospholactate as long proposed, but these findings were subsequently challenged. In this work, we combined metabolomic, genetic, and structural analyses to resolve these discrepancies and determine the basis of F 420 biosynthesis in mycobacterial cells. We show that, in whole cells of Mycobacterium smegmatis , phosphoenolpyruvate rather than 2-phospholactate stimulates F 420 biosynthesis. Analysis of F 420 biosynthesis intermediates present in M. smegmatis cells harboring genetic deletions at each step of the biosynthetic pathway confirmed that phosphoenolpyruvate is then used to produce the novel precursor compound dehydro-F 420 -0. To determine the structural basis of dehydro-F 420 -0 production, we solved high-resolution crystal structures of the enzyme responsible (FbiA) in apo-, substrate-, and product-bound forms. These data show the essential role of a single divalent cation in coordinating the catalytic precomplex of this enzyme and demonstrate that dehydro-F 420 -0 synthesis occurs through a direct substrate transfer mechanism. Together, these findings resolve the biosynthetic pathway of F 420 in mycobacteria and have significant implications for understanding the emergence of antitubercular prodrug resistance. IMPORTANCE Mycobacteria are major environmental microorganisms and cause many significant diseases, including tuberculosis. Mycobacteria make an unusual vitamin-like compound, F 420 , and use it to both persist during stress and resist antibiotic treatment. Understanding how mycobacteria make F 420 is important, as this process can be targeted to create new drugs to combat infections like tuberculosis. In this study, we show that mycobacteria make F 420 in a way that is different from other bacteria. We studied the molecular machinery that mycobacteria use to make F 420 , determining the chemical mechanism for this process and identifying a novel chemical intermediate. These findings also have clinical relevance, given that two new prodrugs for tuberculosis treatment are activated by F 420 .
机译:F 420是各种细菌和古亚亚的低潜能的氧化还原辅因子。在分枝杆菌中,这种辅助因子具有多种作用,包括适应氧化还原应激,细胞壁生物合成和临床抗细胞前药物的激活普瑞曼和Delamanid。最近的生化研究提出了在分枝杆菌中的F 420进行了修订的生物合成途径;有人建议磷酸丙酮酸盐作为该途径的代谢前体,而不是2-磷酸酯,只要提出,但随后攻击这些结果。在这项工作中,我们组合代谢物,遗传和结构分析来解决这些差异并确定分枝杆菌细胞中F 420生物合成的基础。我们表明,在分枝杆菌的整个细胞中,磷酸丙酮属而不是2-磷酸酯刺激F 420生物合成。患有在生物合成途径的每个步骤中携带遗传缺失的M. Smogmatis细胞中的F 420生物合成中间体证实了磷丙酮酸盐酸磷酸酯,用于生产新型前体化合物DEYDRO-F 420 -0。为了确定DEYDRO-F 420 -0生产的结构基础,我们在apo - ,底物和产品结合形式中解决了酶负责(FBIA)的高分辨率晶体结构。这些数据表明,单一二价阳离子在协调该酶的催化预键词时的基本作用,并证明脱氢-F 420 -0合成通过直接衬底转移机构发生。这些发现在一起解决了分枝杆菌中F 420的生物合成途径,并对理解抗细胞前药抗性的出现具有显着影响。重要性分枝杆菌是主要的环境微生物,导致许多重大疾病,包括结核病。分枝杆菌使一种不寻常的维生素样化合物,F 420,并在应力期间使用它持续存在并抵抗抗生素处理。了解分枝杆菌如何使F 420重要是重要的,因为这种过程可以针对创造新的药物来解决肺结核等感染。在这项研究中,我们表明分枝杆菌以与其他细菌不同的方式制作F 420。我们研究了分子机械,即分枝杆菌用于制造F 420,确定该过程的化学机制并识别新型化学中间体。这些发现还具有临床关联,鉴于所述结核病治疗的两种新前药被F 420激活。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号